
A Conceptual Blending Approach to the Generation of Cognitive Scripts for
Interactive Narrative

Justin Permar and Brian Magerko
{jpermar, magerko}@gatech.edu
Georgia Institute of Technology

225 North Ave NW
Atlanta, GA 30332 USA

Abstract

This paper presents a computational approach to the
generation of cognitive scripts employed in freeform
activities such as pretend play. Pretend play activities
involve a high degree of improvisational narrative con-
struction using cognitive scripts acquired from everyday
experience, cultural experiences, and previous play ex-
periences. Our computational model of cognitive script
generation, based upon conceptual integration theory,
applies operations to familiar scripts to generate new
blended scripts.

1 Introduction
People regularly engage in social activities that conform to
cognitive scripts, which are temporally ordered sequences
of actions and events that represent a narrative experience
(Schank and Abelson 1977). Our everyday experiences of-
ten involve modifications to cognitive scripts, where features
from multiple scripts are meshed together to help us make
sense of the world or create an interesting new narrative ex-
perience. For example, children pretend play as heroes or
villains based upon situations seen in superhero films. Al-
though this narrative process is ubiquitous, formally under-
standing how to combine narrative scripts to elicit new, cre-
ative scripts is an unsolved problem (Magerko et al. 2009).
By better understanding how to accomplish this, we can in-
form approaches to computational creativity that deal with
narrative understanding and generation.

Our work addresses the generation of unique scripts given
two input scripts from an agent’s background knowledge in
the narrative domain of pretend play. Playing pretend, as a
creative act, frequently necessitates the generation of scripts
that are blended from cultural references, past play experi-
ences, and common cultural scripts (Moran, John-Steiner,
and Sawyer 2003). In this paper, we present an algorithm
that generates new “script blends”, represented as scripts.
This capability can be used, for example, by an AI agent
to execute scripts that are not defined a priori. Similarly,
an agent could use this capability to aid script recognition
during pretend play activities. Although scripts consist of
causal and temporal links, both of which are critical to com-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

prehension, here we focus on an explicitly temporal repre-
sentation of activities. Our method of modeling a process
that produces script blends from input scripts is based on the
theory of conceptual blending.

Conceptual blending (also known as “conceptual integra-
tion theory”) has been proposed as a basic cognitive op-
eration underlying our capacity for creativity as well as
mundane meaning-making (Fauconnier and Turner 2003).
Pretend play is a narrative domain where numerous cre-
ative feats regularly appear, including the use of real ob-
jects as pretend objects, diegetic and extra-diegetic con-
text switches, and script blending, such as playing cars and
Godzilla wrecking the city. However, script blending is cer-
tainly not confined to pretend play, but instead occurs perva-
sively throughout creative works. Music composition, film
pastiche and narrative sub-genres are all examples of art
works created from multiple sources.

Conceptual blending is a theoretical abstraction encom-
passing a group of related cognitive processes, including
analogical reasoning, mental modeling, and similarity (Fau-
connier and Turner 1998). Fauconnier and Turner’s net-
work model of conceptual blending involves four concep-
tual spaces: a generic space, two inputs spaces, and a blend
(output) space. In addition to the overall structure of these
spaces, conceptual blending also proposes standard pro-
cesses that occur for the purposes of “on-line, dynamical
cognitive work” (Fauconnier and Turner 1998). This net-
work model is a generalization of many cognitive processes
that produce an output derived from two inputs, such as a
process of script generation using two familiar input scripts.
Conceptual blending processes that are relevant to script
generation include 1) the cross-space mapping of counter-
part connections between input spaces and 2) selective pro-
jection from the input spaces to the blend space. A key result
of blending is that the composition of elements (in the blend
space) from the input spaces results in relations not present
in either input space.

To date, research related to conceptual blending, which
we review in section 2, has mostly focused on metaphor and
analogy. Some research has successfully utilized concep-
tual blending for other purposes, including interactive po-
etry generation with Harrell’s GRIOT system and the work
by Li et al. on the generation of fantastical and imaginary
pretend play objects (Harrell 2005; Li et al. 2012). How-

ever, no work has yet applied conceptual blending to cogni-
tive structures that explicitly represent temporality, such as
scripts. Our primary contribution is an initial algorithm that
modifies two familiar scripts to produce a blended script, a
capability that can inform generalized approaches to com-
putational generation of creative narratives.

This paper is outlined as follows. In section 2, we re-
view related work in conceptual blending and computational
models of generative processes. In section 3, we present our
script generation algorithm alongside a motivating example
in order to ground the remainder of the paper. In section 4,
we present two additional examples illustrating details of our
algorithm and approach. Lastly, in section 5 we conclude
with a critical discussion of our current approach, highlight
limitations of our algorithm, and present future work.

2 Related Work
Conceptual Blending
Zook et al. propose a formal model of pretend object play
based on a two-space model of conceptual blending (Zook,
Magerko, and Riedl 2011). The model contains a concep-
tual space comprised of real objects in a real domain and
a second conceptual space comprised of imaginary objects
in a pretend domain. They propose a process in which the
last step blends attributes of real and pretend objects to pro-
duce a blended object, such as a pretend sword. Both our
work and the work by Zook et al. employ a process involv-
ing substitution operations during blending, but their work
does not involve inputs with a temporal dimension, such as
scripts, which necessitates a significantly different approach
to counterpart mapping.

Veale et al. provide a computational model of concep-
tual blending called Sapper that uses a semantic network to
model concepts and relations between concepts and a pro-
cess of spreading activation to explore the conceptual do-
main (Veale, O’Donoghue, and Keane 2000). Their goal
during counterpart mapping is to establish a sub-graph iso-
morphism between the two input spaces, which allows “pro-
jection” of mapped properties between objects. Veale et
al. base the means for establishing the sub-graph isomor-
phism on a structural mapping that is derived from Gentner’s
structure-mapping theory of analogy and the property of sys-
tematicity, which is the idea that particular (analogical) map-
pings are defined by the existence of higher-order relations
(Gentner 1983). Sapper takes as input a semantic network,
which does not represent the temporal nature of scripts that
is central to our problem and approach.

Goguen and Harrell developed the ALLOY blending en-
gine, noting that concepts (and relations between concepts)
are a representation which does not fully support describing
“the structure of things” (Goguen and Harrell 2004). Thus,
they focus on a variant of conceptual blending that they call
structural blending or structural integration. Semiotics, an
integral part of the ALLOY blending engine, includes the
notion of morphisms that map between signs in a source
space and signs in a target space. ALLOY has a notion of
partial mapping between elements in the source and target
spaces, which is a significant differentiation from later work

that treats mappings as exclusively one-to-one. Our algo-
rithm mirrors later work that only uses one-to-one mappings.

Computational Models of Generative Processes
Holyoak and Thagard built ACME to produce analogies,
which at its core is a problem of determining suitable cor-
respondences between two inputs (1989). Holyoak and
Thagard describe categories of constraints that must be re-
spected in order to derive analogies, including 1) structural,
2) semantic, and 3) pragmatic constraints. Structural con-
straints specify that an isomorphism between inputs is valid
if, and only if, the mapping is one-to-one for any objects
and relations (see (Holyoak and Thagard 1989) for formal
definitions). They use a matching process that can estab-
lish mappings between relations when only the number of
arguments matches, regardless of order. Our approach uses
a matching process that uses both the number and order of
arguments, but slightly relaxes the requirements from exact
matches for all arguments to exact matches on all arguments
except one.

Falkenhainer et al. developed SME as an implementation
of analogical reasoning based upon Gentner’s structure map-
ping theory (Falkenhainer, Forbus, and Gentner 1989). SME
is an implementation of analogy based on structural similar-
ity between two representations (of situations). Structural
similarity is achieved by aligning elements of two (simi-
lar) representations using two primary constraints: 1) one-
to-one mapping, and 2) parallel connectivity (retaining the
order of arguments for a predicate). SME, as pointed out
by (Holyoak and Thagard 1989) requires an exact match of
predicates (part of the predicate calculus representation fa-
vored by Forbus et al.) during mapping. Closely related to
SME is MAC/FAC, where the MAC stage uses a computa-
tionally inexpensive non-structural filter to reduce compu-
tational complexity (Forbus, Gentner, and Law 1995). Our
approach is closely related to SME, as we use the notions of
predicate matching and parallel connectivity to assert equiv-
alence. A key difference is our use of path representations
during structural alignment.

3 Script Blending Algorithm
In order to guide this section, we present an example blend
between two scripts familiar to Western culture: a stage-
coach ride script, shown in Figure 1, and a guided tour bus
tour script, shown in Figure 2. Our script representation is
a directed acyclic graph (DAG), a restriction of a general
graph structure that we require in order to establish a finite
number of “paths” through a script. The script is read top-
down, with an initial event beginning the script. The edges
between nodes are directed, indicating a temporal ordering
among actions in the script. The predicates should be inter-
preted as actions. Parentheses surround the argument list for
the predicate, henceforth referred to as the entity list. All en-
tities are capitalized in order to visually distinguish between
entities and predicates. The last noteworthy feature illus-
trated in Figure 1 is the inclusion of a floating-point number
(0.6) just after the Stagecoach entity in the “enter” predicate.
This number is an iconicity value, which is a real number in

1 arrive(Driver, Boarding Location)

2wait(Driver) 3 enter(Passenger, Stagecoach (0.6))

4
return(Passenger,
Stagecoach) 5

tell(Passenger, Driver, White
House)

6 departs(Driver, Passenger)

8
arrival notice(Driver,
Passenger) 7 converse(Driver, Passenger)

9
arrive(Driver, Passenger, White
House)

Figure 1: Stagecoach source input script

1
arrive(Passenger, Boarding Loca-
tion)

2 tell(Guide, Passenger, Board Bus)

3 board(Passenger, Tour Bus)

4
tell(Guide, Passenger,
Welcome)

5 depart(Guide, Passenger)

6 visit(Guide, Passenger, Landmark)

7

question(Passenger,
Guide, What is the
next stop?)

8
arrive(Guide, Passen-
ger, Boarding Loca-
tion)

Figure 2: Tour bus target input script

the range [0,1] that indicates the uniqueness of an entity (or
predicate) in a script within the context of a script knowl-
edgebase (Magerko, Dohogne, and DeLeon 2011). For ex-
ample, a stagecoach (in the modern Western world) is com-
monly used in the context of a horse-drawn trip within a par-
ticular locality, and thus is assigned an iconicity value of 0.6.
Predicates can also be iconic; for example, a “pitch” action is
nearly exclusively associated with baseball, and thus would
be assigned a high iconicity value in a baseball script1.

Our algorithm contains three phases: 1) counterpart map-
ping, 2) mapping selection, and 3) mapping application. At
a high level, our approach combines the path representa-
tion mentioned by Veale et al. with the notions of one-
to-one mapping and parallel connectivity from structure-
mapping theory (Gentner 1983; Veale, O’Donoghue, and
Keane 2000). As mentioned above, the blend example con-

1“Pitch” would also have a high iconicity value in a script for
the game of Cricket. This demonstrates the importance of context
of a knowledgebase when calculating iconicity values.

tains the stagecoach script as the source input and the tour
bus tour script as the target input. In our algorithm, the target
script is always the input that is modified in order to generate
a script blend (an approach inspired by metaphor).

Counterpart-mapping Phase
The first algorithm phase, known as counterpart-mapping,
identifies all paths through the input scripts, given a start
node and an end node in each script. Paths are identified us-
ing a modified depth-first search that continues to search for
paths until all edges in the graph have been traversed. This
depth-first search step is guaranteed complete due to the use
of DAGs. We attempt to model the notion of “similar activi-
ties” as a formalism of structural similarity between a pair of
paths in the two input scripts, which retains the temporal or-
dering of nodes as a form of “higher-order” structure when
comparing nodes during the next step.

After all paths have been found, the algorithm establishes
counterpart mappings via three node match rules:

1. Exact-match: the predicate in the source and target nodes
match (using literal equality) and both the order and num-
ber of entities matches. Note that this rule is a require-
ment for both predicate equality and parallel connectivity
(from structure-mapping theory). Note that nodes com-
mon to both scripts will be mapped, which provides for
temporal coherence.

2. Predicate-match: a relaxation of the exact-match rule
where exactly one entity differs. The strictness of ex-
actly one different entity is an effort at ensuring coher-
ence of generated blends. For example, eat(Dog, Dog
Food) does not have a predicate-match with eat(Person,
Chinese Food) because two arguments differ. However,
eat(Dog, Chinese Food) would match with eat(Person,
Chinese Food) because exactly one argument differs.

3. Ordered-entity-match: similar to the exact-match rule, but
predicates are allowed to differ. That is, the requirement
is for corresponding arguments to match exactly.

Holyoak and Thagard built ACME as an analogical rea-
soning system. Our approach differs primarily by requiring
what Falkenhainer et al. term “parallel connectivity”, with
a slight relaxation from exact matches for all arguments to
exact matches on all arguments except one (in the case of
the ordered-entity-match rule).

During counterpart-collection, every pair of paths (taking
one from the source and one from the target to make a pair)
is used for pairwise comparison of nodes. This comparison
technique enforces temporal ordering, a feature of scripts
that must be retained for comprehension. Each node in the
source and target is tested for a match using the three rules
above. If a match is found between a node ni in the source
input and node nj in the target input, a candidate counterpart
mapping is proposed. An intentional restriction our algo-
rithm places upon further matches is that matches are only
possible using nodes that are successors of nodes ni (e.g.,
ni+1, . . .) and nj (e.g., nj+1, . . .). That is, given a mapped
pair of nodes (nx, ny), the only potential additional matches
involve nodes in the source in the set {nx+1, . . . , nS} and

1
arrive(Driver,
Boarding Lo-
cation)

2wait(Driver) 3
enter(Passenger,
Stagecoach (0.6))

4

return(
Passenger,
Stagecoach)

5
tell(Passenger,
Driver, White
House)

6
departs(Driver,
Passenger)

8

arrival notice(
Driver, Passen-
ger)

7

converse(
Driver, Passen-
ger)

9

arrive(
Driver,
Passenger,
White House)

1
arrive(Passen-
ger, Boarding
Location)

2
tell(Guide, Passenger,
Board Bus)

3
board(Passenger, Tour
Bus)

4
tell(Guide, Passenger,
Welcome)

5
depart(Guide, Passen-
ger)

6
visit(Guide, Passen-
ger, Landmark)

7

question(Passen-
ger, Guide, What
is the next stop?)

8

arrive(Guide,
Passenger,
Boarding Lo-
cation)

Figure 3: Stagecoach and Tour Bus Counterpart Mappings

nodes in the target in the set {ny+1, . . . , nT } where S is the
number of nodes in the source path in the current path pair
and T is the number of nodes in the target path in the current
path pair. In this manner, any nodes that match under the
constraint of temporality are found for each path. Similar to
the approach by Zook et al., we identify attributes common
to both inputs and employ a process of attribute substitution
during blending. A key difference, however, is the temporal
nature of scripts, which requires a significantly different ap-
proach to counterpart mapping. An example pairwise path
mapping comparison is show in Figure 3. The “active” path
through each script is shown in bold.

Figure 3 can be used to illustrate the restriction of tempo-
rality used during counterpart mapping. The “arrive” nodes
are mapped to each other. Consequently, the only nodes
available for further counterpart mapping match tests are
nodes after the “arrive” nodes.

Mapping-selection Phase
Mapping-selection takes as input the pairs of counterpart
mappings from the counterpart-mapping phase in order to
prioritize potential mappings. Mappings are selected as fol-
lows:

1. The first pass through all pairs of mappings identifies
iconic mappings. If the mapping involves an iconic node
from the target, the mapping is discarded. The reason
is that iconicity is a distinguishing characteristic that we
want to preserve. For a clear illustration, a pirate is a
character typically wearing a pirate’s hat, sword, and eye
patch. However, if you remove those accessories, the pi-
rate is no longer a pirate, but a relatively uninteresting
person. For the same reasons, iconicity in the source is a
characteristic that, if possible, we want to transfer to the
target. For this reason, if a mapping contains an iconic
source node, then we prioritize this mapping for selection.

2. The second pass through the mappings sorts the mappings

1 arrive(Driver, Boarding Location)

2 tell(Guide, Driver, Board Bus)

3 board(Driver, Tour Bus)

4
tell(Guide, Driver,
Welcome)

5 depart(Guide, Driver)

6 visit(Guide, Driver, Landmark)

7

question(Driver,
Guide, What is the
next stop?)

8
arrive(Guide, Driver,
Boarding Location)

Figure 4: “Stagecoach” + “Tour bus” output blend

sets in order of descending set size. For example, if the
counterpart-mapping phase found 5 mappings for path
pair (pathS1, pathT1) and 2 mappings for the path pair
(pathS2, pathT2), then these two sets of mappings are
sorted in descending order (a set of 5 pairs then a set of 2
pairs). Mappings are used so long as they do not specify
previously-mapped nodes, thereby ensuring a one-to-one
node mapping.

As mentioned above, our current mapping selection heuris-
tic is to choose mappings in order of descending set size,
which is a greedy algorithm. Our motivation for using a
greedy selection algorithm is to have a large set of selected
mappings at the end of the mapping-selection phase. This
may prove not to be the best heuristic for mapping selection,
which is an area for future work.

Modify-target Phase

The modify-target phase uses selected mappings to modify
the target input script. The match rules are designed to al-
low only one difference in a match. The only difference be-
tween two nodes matched with the predicate-match rule is
one entity. Similarly, the only difference between two nodes
matched with the ordered-entity-match rule is the predicate.
Consequently, this phase involves transfer of the difference
from the source to the target. The only noteworthy detail is
that entity transfer is a global re-mapping of the entity akin
to a variable rebind. From figure 3 above, the predicate-
match rule maps Driver (source script) → Passenger (target
script). It would be incoherent to map the entity only for that
one specific node. Predicate changes, however, are local to
the target node specified in the mapping.

Figure 4 illustrates the output. All modifications to the
target input script are in bold. The blend script can be inter-
preted as a training day for a new tour bus driver.

1

begin(Cat
Lover, Day in
the life of a cat
owner)

2
feed(Cat
Lover, 13
Cats)

3
encounter(Cat
Lover, River) 4

slips(Cat
Lover)

5
frightened(
Stray Cat, River) 6

impact(
Cat Lover,
Ground)

7
wear(Cat Lover,
Gloves) 8

injures(
Cat Lover,
Arm)

9
rescue(Fright-
ened Cat) 10

bandage(
Cat Lover,
Injury)

11
injures(Fright-
ened Cat, Cat
Lover)

12
arrival(Cat
Lover, Home)

13
sneeze(Cat
Lover, Dander)

1

begin(
Cowboy,
Cattle
Drive)

2
ride(
Cowboy,
Horse)

3

smack(0.9)(
Cowboy,
Rope,
Saddle)

4
slips(
Cowboy)

5
impact(
Cowboy,
Ground)

6
injures(
Cowboy,
Arm)

8
encounter(
Cowboy,
River)

7

bandage(
Cowboy,
Injury)

9
frightened(
Cow,
River)

10
rescue(
Frightened
Cow)

11

arrival(
Cattle,
Destina-
tion)

Figure 5: Cat owner and Cattle drive counterpart mappings

4 Script Generation Examples
The first example, inspired by TV commercials, is a blend
between “A Day in the Life of a Cat Owner” (source input)
and “Cattle Drive” (target input). Figure 5 depicts the source
input (on the left), the target input (on the right), and selected
counterpart mappings, all of which are created due to the
predicate-match rule. Consequently, all of the changes to the
target script to produce the blended script are (global) entity
substitutions. Figure 6 depicts the output, a script containing
actions and events that could be summarized as “Cat Lover
Joins the Cattle Drive”. All modifications to the original
target input script are in bold.

The second example is a blend between a source script of
Derrick Rose, a member of the Chicago Bulls NBA basket-
ball team, charging the basketball hoop and a target script
of a bullfight. Figure 7 depicts the source and target in-
puts and selected counterpart mappings. A key aspects of
this blend, which is not explicitly modeled computationally,
but which is readily accessible to humans, is the linguistic
double-meaning of the word “bull”, referring to both a bull
in a bullfight and Derrick Rose as a Chicago Bull. Both
meanings appear in the source and target scripts and allow
the algorithm to establish the “creative” counterpart map-
pings depicted in Figure 7. Figure 8 illustrates the script
blend, with predicate and entity substitutions in bold.

5 Discussion
In this section, we discuss a few noteworthy details and
salient characteristics of our algorithm and approach.

1

begin(Cat
Lover,
Cattle
Drive)

2
ride(Cat
Lover,
Horse)

3

smack(0.9)(
Cat Lover,
Rope,
Saddle)

4
slips(Cat
Lover)

5
impact(
Cat Lover,
Ground)

6
injures(
Cat Lover,
Arm)

8
encounter(
Cat Lover,
River)

7

bandage(
Cat Lover,
Injury)

9
frightened(
Stray Cat,
River)

10
rescue(
Frightened
Cat)

11

arrival(
Cattle,
Destina-
tion)

Figure 6: “Cat Lover” + “Cattle Drive” output blend

1
enter (Derrick
Rose, Stadium)

2rise(Crowd)

3
drive(Derrick
Rose)

4
block(Opponent,
Bull)

5
dodge(Derrick
Rose, Opponent)

6
run(Bull, Oppo-
nent)

7
juke(Bull, Op-
ponent)

8drive(Target)

9
dunk(Derrick
Rose)

10cheer(Crowd)

1
enter(Bull, Sta-
dium)

2
watch(Matador,
Bull)

3 applaud(Crowd)

4
charge(Bull,
Opponent)

5
chase(Picadores,
Bull)

6
intimidate(Op-
ponent, Bull)

7
raise(Matador,
Capote)

8 cheer(Crowd)

Figure 7: Derrick Rose and Bullfight counterpart mappings

1
enter (Derrick
Rose, Stadium)

2
watch(Matador,
Derrick Rose)

3rise(Crowd)

4
charge(Derrick
Rose, Opponent)

5
chase(Picadores,
Derrick Rose)

6
block(Oppo-
nent, Derrick
Rose)

7
raise(Matador,
Capote)

8cheer(Crowd)

Figure 8: “Derrick Rose” + bullfight output blend

Our algorithm is currently designed to perform predicate
and entity substitutions. We chose these operations in or-
der to produce coherent, executable blends. As mentioned
above, our algorithm is designed for use by an intelligent
agent in narrative contexts like pretend play. The algorithm
assumes that the input scripts are both valid and executable,
and it is vital that the algorithm produces executable scripts
as well.

A predicate substitution occurs when a mapping is created
as a result of an ordered-entity-match. In this case, all of the
arguments match. Moreover, the predicate is valid in the
source script for the matched arguments. As a result, there
is a “high” likelihood that the transfer of the predicate from
the source to the target will be both coherent and executable.
However, there is no guarantee, perhaps due to a mismatch
of context or a lack of ability to perform the action in the
blended script (perhaps due to missing pre-conditions for the
action to occur that existed in the source script, but do not
exist in the target script).

Narratives are comprised of both causality and tempo-
rality, which led us to consider how temporality and ac-
tion/event ordering influences our perception of similarity
between activities (Rimmon-Kenan 2002). Because our
scripts explicitly specify temporality, we ensure that coun-
terpart mappings account for node ordering. This require-
ment, in turn, helps to ensure that the algorithm produces
coherent, executable scripts by avoiding the introduction of
violations of pre-conditions that may result from reordered
nodes.

Limitations
As discussed above, our algorithm uses two features of
scripts, temporality and iconicity, during blending. These
surface-level features do not provide us with the semantic
information required to maintain causality, which is a strong

requirement for coherence of a blended script. Guaranteeing
causality, and thus coherence, requires a vast amount of gen-
eral and specific knowledge that we do not currently use in
our approach. As a result, our algorithm can produce inco-
herent blended scripts. Additionally, our algorithm produces
blends only for two inputs scripts (and not n-ary inputs).

Another limitation of our current approach is the use of
a literal (syntactic) match when testing for equality between
the predicates or entities in two nodes. For a given knowl-
edge base, this could be a significant limitation to identify-
ing existing counterpart mappings. This could, in theory,
be resolved in a reasonably straightforward manner by us-
ing another equality test. For example, perhaps a minimum
similarity threshold for two entities, given a (presumably)
common prototype.

Future Work
This paper presents first steps toward a script generation al-
gorithm. We are currently undertaking an effort to acquire
a script knowledge base in order to evaluate our approach.
Concurrent with that effort, we have identified a few pos-
sible extensions to our algorithm to ensure it is generally
applicable.

First, our current algorithm uses only two operations to
produce a blend: 1) entity substitution and 2) predicate sub-
stitution. These substitutions do not provide us with an abil-
ity to augment (modify) the structure of the target graph. For
example, it may make sense to “graft” nodes from the source
script into the target script in the case where there is an es-
tablished counterpart mapping between nodes. This would
provide a significant additional capability of executing ac-
tions originally specified in the source script that have no
counterpart in the target.

Second, we intentionally designed the algorithm to pro-
duce one blended joint activity for execution by an intelli-
gent agent. However, SME and other systems regularly pro-
duce multiple blends with a relevant notion of “score” that
could prove useful. As noted above, there is no guarantee
that a given blend is executable. Thus, a score metric could
be devised that measures executability using the play con-
text.

Third, our algorithm may benefit from using contextual
information, perhaps by employing a commonsense knowl-
edge base such as ConceptNet (Liu and Singh 2004). Con-
sider a scenario where a “Cooking” source script contains
the predicate cook(Person, Food) and a “Picnic” target script
contains the predicate eat(Person, Food). A counterpart
mapping can be established between the two nodes accord-
ing to the ordered-entity-match rule, resulting in a predicate
substitution in the “Picnic script” of “eat” → “cook”, which
is incoherent because cooking cannot occur during a picnic,
due to a lack of a heat source2. A similar problem occurs
for entity substitution. An additional post-processing step
could be used to identify, and subsequently filter, “inappro-
priate” blends based on context, which could be knowledge
intensive.

2We admit that there could be exceptions, such as a picnic with
a fire, but a canonical picnic does not involve a fire.

References
Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1989. The
structure-mapping engine: Algorithm and examples. Artifi-
cial intelligence 41(1):1–63.
Fauconnier, G., and Turner, M. 1998. Conceptual integra-
tion networks. Cognitive science 22(2):133–187.
Fauconnier, G., and Turner, M. 2003. The way we think:
Conceptual blending and the mind’s hidden complexities.
Basic Books (AZ).
Forbus, K. D.; Gentner, D.; and Law, K. 1995. MAC/FAC:
a model of similarity-based retrieval. Cognitive Science
19(2):141–205.
Gentner, D. 1983. Structure-mapping: A theoretical frame-
work for analogy. Cognitive science 7(2):155–70.
Goguen, J., and Harrell, F. 2004. Foundations for active
multimedia narrative: Semiotic spaces and structural blend-
ing. Interaction Studies: Social Behaviour and Communi-
cation in Biological and Artificial Systems.
Harrell, D. F. 2005. Shades of computational evocation and
meaning: The GRIOT system and improvisational poetry
generation. In Proceedings, Sixth Digital Arts and Culture
Conference, 133–143.
Holyoak, K. J., and Thagard, P. 1989. Analogical mapping
by constraint satisfaction. Cognitive science 13(3):295–355.
Li, B.; Zook, A.; Davis, N.; and Riedl, M. O. 2012. Goal-
driven conceptual blending: A computational approach for
creativity. In International Conference on Computational
Creativity, 10.
Liu, H., and Singh, P. 2004. ConceptNet – a practical
commonsense reasoning tool-kit. BT Technology Journal
22(4):211–226.
Magerko, B.; Manzoul, W.; Riedl, M.; Baumer, A.; Fuller,
D.; Luther, K.; and Pearce, C. 2009. An empirical study
of cognition and theatrical improvisation. In Proceedings
of the seventh ACM conference on Creativity and cognition,
117–126.
Magerko, B.; Dohogne, P.; and DeLeon, C. 2011. Employ-
ing fuzzy concepts for digital improvisational theatre. In
Proceedings of the Seventh Annual International Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence.
Moran, S.; John-Steiner, V.; and Sawyer, R. K. 2003. Cre-
ativity in the making. Creativity and development 61–90.
Rimmon-Kenan, S. 2002. Narrative fiction: Contemporary
poetics (new accents).
Schank, R. C., and Abelson, R. P. 1977. Scripts, plans,
goals and understanding: An inquiry into human knowledge
structures.
Veale, T.; O’Donoghue, D.; and Keane, M. T. 2000. Compu-
tation and blending. Cognitive Linguistics 11(3/4):253–282.
Zook, A.; Magerko, B.; and Riedl, M. 2011. Formally mod-
eling pretend object play. In Proceedings of the 8th ACM
conference on Creativity and cognition, C&C ’11, 147–156.
New York, NY, USA: ACM.

