
TRUE STORY: Dynamically Generated, Contextually
Linked Quests in Persistent Systems

James Pita
TEAMCORE Research Group

University of Southern California
Los Angeles, CA 90089

307.371.2139

jpita@usc.edu

Brian Magerko
Games for Entertainment and

Learning Lab
417 Communication Arts Bldg

Michigan State University

magerko@msu.edu

Scott Brodie
Microsoft (Carbonated Games)

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052-6399

sbrodie@microsoft.com

ABSTRACT
Massively Multiplayer Online Role-Playing Games (MMORPGs)
typically use a handful of static conventions for involving players
in stories, such as predefined quest or story paths (a quest or story
path is one in which the user experiences a sequence of related
quests that must be accomplished in a particular order). Beyond
the work done in MMORPGs there has been strong research in
designing adaptive approaches to interactive fiction/drama that
dynamically author content for users of the interactions [10] [18].
The system architecture presented in this paper, TRUE STORY, is
designed to address issues concerning dynamically generated
quest or story paths in persistent worlds, such as MMORPGs, for
users to engage in more enhanced, interactive and personal
experiences. TRUE STORY empowers persistent world designers
by offering a truly modular approach for dynamically generating
and presenting compelling content that results in user experiences
worth telling a story about. The current implementation is set in a
game model to demonstrate a dynamic quest generation system
built to present users with unique and compelling experiences
linked by context to past quests and/or experiences. This is
achieved by utilizing history and relationships developed through
interaction between world objects and actions.

Categories and Subject Descriptors
I.2.1 [Applications and Expert Systems]: Games

Keywords
Multiplayer Games, MMORPG, Interactive Narrative,
Contextually Linked Goals, Dynamic Quest Generation, Story
Generation, Game AI

1. INTRODUCTION
Persistent game worlds, such as World of Warcraft, have inherited
a number of conventions established in standalone games that
have prevented users from enjoying the unique experience that
persistent systems have the potential to offer. The most notable
conventions are leveling, a reward system that presents quantified
status points to players for completing tasks, and questing, the act
of receiving and completing designer defined goals in return for
level rewards. Combined with the desire for a narrative
component in persistent game worlds these conventions force
designers to offer their users a finite set of scripted quests that all
users experience in a similar fashion. Although these conventions
allow for an enjoyable experience they prevent the user from truly

molding their quest or story paths into a unique and personal one
that they can identify with. A potentially better approach then,
would be to determine possible quests for a user and then select
the most relevant quests to what the user has done in the past [18].
In turn this will help drive a user’s unique quest experience over
their character’s lifeline.

Noting the lack of unique quest experience inherent in persistent
game worlds such as World of Warcraft, we have designed an
open-ended framework that more naturally utilizes the interactive
and persistent properties of MMO systems. This aids in
producing an interactive impact similar to dynamically authored
interactive systems that most designers of persistent worlds have
failed to capture properly in practice.

In an effort to create a framework that is capable of dynamically
generating contextually linked and meaningful quests there were
some key design principles that had to be addressed. As actions
and interactions occur between users and the persistent world they
must be tracked and the system must be updated accordingly so
the quest generation system can create quests that are unique to
the current state of the world. While examining these interactions
and actions, the system must be capable of generating quests that
are both relevant and meaningful to a user’s experience. This
must be achieved without any long-term quest paths or end goals
as a constraint because the framework is meant for persistent
worlds. This does not infer that quest paths cannot end up
achieving a meaningful end state, however, they should not be
driven by such a goal. It is also important that the information
tracked by the system is properly managed so that it does not
grow to large to handle, which in turn could slow the system
down with meaningless searches for relevant information. Our
framework, TRUE STORY, attempts to address these design
principles and the related work section below describes how the
framework was influenced, formulated, and modified to scope
beyond just MMO games.

2. Related Work
The problem of dynamically authoring narrative into an
interactive experience is nothing new. Numerous games and
academic papers have been dedicated to exploring and discussing
the topic [10] [1] [9] [14] [20] [3] [18]. While the seed for the
concept of TRUE STORY came directly from analyzing the
attempts made by numerous games in the MMORPG genre, the
majority of the initial design was informed from research in the
Interactive Drama (ID) domain. The recent establishment of

“Interactive Drama as a new medium” has generated a number of
academic papers and example implementations related to the
combination (or separation) of interactivity and storytelling.

2.1 Conditions and Contextualization
The unifying characteristic between the examined systems was an
underlying driving force, or planner, that progresses the storyline
or interactions of the system. It became apparent, however, that
there had been little work to incorporate these ideas into a
dynamic quest generation system and less yet towards dynamic
quests in persistent worlds based on player interaction. By
utilizing the principles learned from reviewed work we were able
to design an open-ended framework capable of creating unique
quest experiences for users in persistent systems.

In order to achieve a generalized and open-ended quest generator
it was important that we developed a framework that could
incorporate any form of quest experience. Quests are limited to
those defined for a particular system, but there is not limit on how
many types of quests can be defined in a system utilizing our
framework. Incorporating the defined quests and the principles of
dynamically authoring narrative the framework is then capable of
presenting a player with a unique questing experience and quest
paths, one where each consecutive experience relates to previous
interaction within the system.

Quests that are generated are not driven by a specific story arc or
plot focus, which is different from the work done in interactive
drama. Some approaches to interactive drama direct users and
story content by evaluating previous actions and deciding what
plot line appears logical at the moment [10] [1] [18] [16] [19],
however, since questing experiences are very different from
dramatic experiences users should be capable of directing their
own experience if presented with the proper opportunity space.
This opportunity space is created by generating quests that are
related to past experiences so a user can pursue a path that
expands their knowledge of a previous experience.

2.2 Open-Ended Design
Impro [6] in particular influenced our design through its initial
defense of designing stories without knowing what the end goal
is, thus speaking to how an interesting experience could arise
within an interactive experience. A quote from an excerpted
Johnstone conversation explains one of the major dilemmas faced
with persistent worlds:

I have to write a story and I’m supposed to map out
everything that’s going to happen so that my teacher can
mark it. She says it will stop me [from] writing the
wrong things.

Although this has been a traditional method of story generation
the problem that arises is when a user experiences interactive
drama from themselves, especially in real time and in a persistent,
digital world, a designer cannot possibly predict what actions or
choices that user may make. The only way to make such a
prediction is by limiting the user’s options and thereby limiting
their experience. Some attempts have been made at modeling user
preferences and generating story content based on such models
[17] [9] [18], however, in a questing system this would limit the
questing options being presented to a user. Users may want to
change their questing preferences on a regular basis.

TALE-SPIN’s [11] focus was also beneficial in realizing how the
use of attribute variables for characters could be used to add depth
to the contextual links we developed in our implementation.
Attributes help define how difficult a quest will be for a user to
complete and can help narrow the quest space being presented to
users. They also add an extra component for MMORPGs by
giving users an incentive to increase attributes in order to achieve
more complex quests, which is different than the traditional
method of receiving more complex quests to increase attributes.

2.3 Layer Relationships
Interestingly enough, an important trait that can help guide
dynamic quest generation and is often overlooked involves neither
of the aforementioned topics, but a third involving modeling
relationships between characters. David Freeman, in his book
Creating Emotion in Games, states a screen-writing tool used for
mapping relationships between characters from film. He
describes how he models basic relationships such as “protective”
or “jealous” between the main characters in his game. Depending
on which traits other characters are aware of then dictates how a
character might react.

Behaviors such as these relate to the overall believability of
synthetic characters [15]. Adapting this trait layer technique to
model relationships that can dynamically adapt based upon
previous and current actions is at the heart of what makes TRUE
STORY tick. TRUE STORY achieves this by maintaining
relationship states between characters as well as mapping an
individual’s knowledge of how other characters are related to each
other. Over time as a user continues to interact with characters in
the system they naturally gain knowledge of these characters’
nuances, but in turn within the system the characters gain
knowledge of the user’s behaviors as well as other characters’
behaviors.

Freeman also states clearly what separates good and bad stories
“Interesting, but also deep”. This quote relates to any object or
plot point, and it relates to the TRUE STORY framework as well.
TRUE STORY’s success comes from checking for possibilities
that may present a user with an interesting and deep quest based
on interactions that have occurred within the system.

3. TRUE STORY Framework
TRUE STORY is a dynamic goal generation architecture for use
in persistent systems where multiple users directly interact. The
current implementation takes place within a text-based, medieval,
persistent world implemented by us that makes use of traditional
medieval roles. The following examples occurred at a state when
the world consisted of roughly thirty rooms and twelve characters.

The purpose of TRUE STORY then is to systematically assign
unique quests, such as a quest to avenge your brother’s murderer,
to users and objects continually, based upon some specified set of
constraints. Constraints are predefined rules or preconditions that
are required to be met for a quest to be presented to a user. The
constraints used for TRUE STORY include the relationship
between two characters, a character’s past experiences (quests),
performable actions such as attack, proximity to information and
attributes such as thievery skill. These help dictate what a
character is capable of accomplishing so the users are not assigned
impossible tasks and by utilizing a user’s memories as a constraint
we are able to keep quests within a relevant quest path. As a user
completes quests their memories and attributes are updated

according to the task performed, which in turn opens up new
quest opportunities. For example, if a user has brought numerous
petty criminals to justice then the city guard may send that user on
a quest to catch a more serious criminal since the user has proven
their merit.

While designers have the ability to define different constraints
than those mentioned, constraints generally come in the following
forms:

 Memories: past quests in which a role has been played
(either as protagonist, party member, or passive
participant). For instance, in an example taken from our
implementation user character A (please note that in our
framework both user characters and non-playable
characters are identical in function and form so all
following examples can be created by a user character
interacting with either another user character or non-
playable character) has chosen to take the role of a thief
and has stolen an object from character B, both
characters within the system have now created a
different memory of the account. Character A maintains
a full memory of how the action took place and what
was stolen while B, who in this particular instance did
not catch A in the act, creates a memory of the item
being stolen, but his memory does not include A as the
thief in question. These memories are now stored and
will help spark quests in the future. If character C now
comes in contact with B, assuming user character C is a
reputed lawman and is well known to be so by B,
character B will dynamically generate a unique quest for
C to find and bring the thief to justice. This quest will
not be generated for other characters that are well
known to be lawbreakers. It was necessary for A to
maintain a memory of the account in order for the
system to recognize when C has successfully completed
the quest since A is the only character who holds an
account of who actually stole the object. Since
memories could be created at alarming speeds in a
persistent world it is important that an appropriate
method for memory management is designed. A
persistent world must be capable of eliminating
memories that are not useful and tracking those that are.

 Attributes: designer defined object properties (ex:
affinity, thievery, importance, health, damage, etc).
These are used to see if a character has the capability to
complete a quest. A character with no fighting history
or qualifications will not be asked to take on an evil
dragon until they have improved their merits.

 Actions: designer specified actions that correspond to
the types of quests characters could accept, offer, or
earn memories from. Within the context of our system
these involve talking with other characters to gain
information, stealing, attacking, and examining the
world around them. Using the current running example
with character A, B, and C taken from the current
system, C’s actual assigned quest would either be to
steal the item back or kill the culprit (character A)
depending on the importance of the original item stolen.
To recognize that this was a form of justice and not
villainy the quest’s reward is a positive affinity gain

plus whatever B is offering as a reward. In order to
accomplish this C would have to examine other
characters until he discovered a character with the
stolen item, which in our case this character would
automatically be labeled as the thief. Given a more
robust implementation there may be methods for
extracting information to find the real thief if A has
since dispersed of the item. Please note in a larger
system there may be a different quest type to discover
the culprit’s identity and turn that character into the law,
which would make more sense in this example.

 Layers: relationships established between objects
and/or their properties based upon context. Influenced
by quest roles and/or relationships with other objects
[5]. As players interact with others, relationships begin
to develop. If character A continually steals from
character B and give the items to character D then B
will begin to develop a negative relationship with A
while D develops a positive one. As an additional
clarification, relationships can be established between
characters and non-character objects if designers so
choose, as they all derive from the same base class (our
system implementation does not demonstrate this
directly).

 Proximity: designer defined area of affect to access
memory information from game characters or objects.
This is also a constraint that considers the networked
environment and the need for search limitations in
practice (typically a radius around each object, in our
implementation information can only be gained from the
objects in the current room). This allows for efficient
memory searches in a reasonable time. As a user
interacts with objects within the system they will
maintain a memory of that interaction for use in future
situations, but they cannot draw on information they
have not previously learned or are not in proximity of.

In many cases quests cannot be generated until specific types of
memories, attributes, or layers have been established. Using the
running example we’ll assume there is a non-playable character E
who was designed as a thief lord who gives thieving quests to
characters who are known thieves. Before E will actually
generate a quest for A, A must have proven to be a strong thief.
The current implementation recognizes A’s capability based not
only on their thievery attribute but also by A’s memories of their
successful thieving attempts. If A has performed numerous
thieveries than E will search their memories of known important
items and create a quest for A to steal one of these items.

Related to the concepts of constraints is the concept of relevancy.
While constraints serve to limit the amount of information the
system has to search, relevancy performs a qualitative check on
the data that falls within that constraint space. What determines
the “relevancy” of a quest is strictly up to the system designers.
In TRUE STORY, a quest is relevant if it has some connection of
memory producing capacity that ties into the users current
memories and layers. Currently this check is primitive and does
not actually score which quests are more relevant, however,
within the context of the framework it can be developed to score
relevancy based on designer specified constraints. For instance
given our implementation, lets assume character A and E have

formed a strong affinity with each other and character E is
assassinated by an unknown assailant. As character A wanders
the world looking for quests they may come across a character F
who is able to generate a quest for A that involves the unknown
assailant. Although this information is not conveyed directly, by
involving A in a quest that includes the assailant, A has a higher
probability of fulfilling their quest to kill E’s murderer. This
makes what may otherwise be a trivial quest far more relevant
than others may be. By scoring relevancy to past actions it helps
drive users to meaningful quest paths. Although other quests will
be offered to a user at the same time, the most relevant quests can
be offered first. The user does not see first hand the relevance of
the quest, but is will begin to understand that these quests will
help them discover important information.

The approach to generate quests is twofold: first determine
possible quests to generate, then select the most relevant (i.e. the
most in context) quests to what the user has done in the past. The
hypothesis, then, is that because the relevancy check ensures a
user receives quests that are within context of previous
quests/actions their character has taken, the resulting chain of
events is interesting at worst, but compelling at best. The
justification is that as a user progresses their character’s lifeline
they should naturally follow story lines that interest them by
choosing quests with relevance to a particular story arc. This
returns to the concept of allowing users to create their own
dramatic situations through interaction. Additionally, the fact that
the quests offered are unique to a character’s situation, along with
the character’s actions having lasting effects on the persistent
world, might suggest that the user will feel a greater sense of
agency within the world they are essentially helping to craft (or at
least by contrast to the previously scripted quest chains users were
accustomed to).

4. User Interaction
TRUE STORY can be thought of as a set of small systems
interacting to produce emergent results (unique quests). In
practice, quests are presented in a traditional manner, much like
that of World of Warcraft. A user chooses to speak with other
characters and those characters will in turn offer up information
and quests (see Figure 1). The bulk of the underlying calculations
of TRUE STORY are purposely made transparent to the user.
The difference between TRUE STORY and a system like World
of Warcraft is that the quests being presented to each individual
character are unique, with a constantly changing world creating an
avenue for new quests as the user seeds a character with new
quest experiences and interactions. Each time a user completes a
quest for another character in our system that quest memory is
stored for all concerned parties. If character A is charged with
stealing an item from character B by character E and successfully
completes the quest then all characters will maintain a unique
memory of the action. A will become more proficient in his
thievery skill, B will now have a memory of having lost an item
dynamically creating a quest to discover where the item has gone,
and E will create a memory that A has helped them in the past
thus granting A higher affinity with E. Although in the system’s
current state the information tracked is minimalistic with all
changes to the world being similar to the one above in nature, the
framework itself can provide for more comprehensive information
tracking if the system is designed properly.

Figure 1: General Quest Request

As Figure 1 illustrates, there are two similar ways a character
becomes associated with a generated quest. The most typical
interaction is for the character to “ask” (a.k.a. request) for quests
from another character. Characters that have been requested for
quests will run an “offer” routine that searches through the
constraint space involving the two characters. For instance,
character A has just asked character E for any quests they may
have to offer. The system is now granted full access to A and E’s
memories, attributes, and layers. We’ll assume A and E are as
described before and that A and E have formed a trusting
relationship because A has already done numerous thefts for E.
Recently E has learned about an item of low importance and an
item of high importance. Due to the nature of the items, E can
now offer two separate quests to A. The first quest might be to
obtain the item of low importance by any means possible and the
second quest may be to obtain the item of greater importance
while also eliminating any evidence of the crime. This may
include assassinating any witnesses. The offering character will
then present the asking character with this finite set of the most
relevant quests that can be accepted. Quests that may not be
offered may include stealing an item of no importance of simply
gathering information about other items of low importance.

The second method of becoming associated with generated quests
is through generic quests that are automatically offered to other
characters. For example, in the implementation we developed to
demonstrate TRUE STORY, a generic “Steal” quest for an item of
arbitrary value can be offered to any player that has a high enough
theft attribute regardless of their relationship with the offering
character. This allows characters to continually work on their
skills by accepting generic quests to help build them up for more
interesting assignments.

Beyond the user-based characters, non-playable characters
(NPCs) are also treated within the system with the same logic that
user characters are. They are introduced into the world as normal
users with heavily pre-seeded memories and as the world adjusts

their memories and attributes in turn adjust along with the world.
Their adjustment along with the world is critical to the system so
that users may carve a name for themselves in their new
interactive realm. As character A begins to accomplish larger
feats, NPCs in the realm will begin to gain memories of the user’s
character and may even recognize them on sight if they gain
enough fame. This may also help NPCs to create quests against
or for a user’s character. If a user has become a well-known
justice seeker the villains in the interactive realm may want the
user eliminated while other justice seekers may actively search for
the user for aid. With enough space allocated for memories, this
underlying “social network” could produce some impressive
quests based upon long-term memories. Character A may find
that the NPC they saved at the beginning of their career has grown
into a king or perhaps even a thief lord. Character A may then be
called on during a much later date in their interactive career to
perform a new deed or perhaps be saved from certain death by
such an NPC.

Finally, it is worth noting again that the key component of TRUE
STORY revolves around the fact that the system does not use any
long-term quest paths as a constraint. As rationalized in many of
the above sections, a long-term goal would add an “end state” that
is undesirable inside of a persistent game system. The purpose of
TRUE STORY is to subvert the need for an end state entirely by
keeping the player consistently engaged by discovering the unique
path they are choosing to follow. A user could begin a quest path
to discover the murderer of a well-known friend and, once the
assailant is found, bring them to justice. All the while the user
has completed numerous quests along their journey, which in turn
has opened up new quest paths for them to explore. Although no
dialogue has been implemented into our system a user is still
capable of following meaningful quest paths that have a strong
story element to them. Infusing meaningful dialogue into the
system could only make it stronger, but for the sake of dynamic
quest generation and quest path generation is not necessary.
Although such a quest path as defined above is possible within
our current implementation, one place our implementation
currently falls short is rating how relevant quests are to a specific
quest path. Currently the system only decides whether a quest is
relevant to the character seeking quests. In the future it will be
necessary to explore assigning quests relevancy weights. As
relevancy builds the character can pursue a meaningful story that
models a real life experience and although the story may come to
a conclusion or the user may feel the story they are following is
complete, there was no real objective in mind outside of a
meaningful interactive experience. However, the “Future Work”
section describes some potential uses of this system in
conjunction with end-state allowable implementations.

5. Implementation
For the implementation of TRUE STORY a simple text based
persistent world is used. The environment consists of a series of
rooms interconnected in a two dimensional plane. All other
objects in the world reside either in a room or within another
object including characters. Rooms are themselves an individual
class. Rooms are the boundaries of the world and can contain any
number of objects. A room can also be linked to up to four other
rooms in the directions north, south, east, and/or west. Within the
boundaries of the world, all interactions occur between characters
and equipment. Both of these were grouped higher into an all-

encompassing class called ‘object’, which is the base class for all
interactions. Categorizing all physical things in the world as
objects makes it easy for all interactions to occur through objects
and allows the model to be easily extendable. Even if new
‘object’ types were created such as food they would be subject to
the same interactions as characters and equipment with a few new
interactions specific for food. Methods have been created to add
rooms, items, characters, and features to the world as the
programmer sees fit. In order to add something to the world it
was necessary that the object be seeded with the correct
information (armor has specific defense values, characters have to
be given attributes and characteristics, etc.).

The interactions between objects used in TRUE STORY were
earlier defined as quests. The quests chosen for this
implementation were:

 Kill: an interaction where an object in the world is
trying to eliminate another object within the world.

 Steal: an interaction where an object (in our model a
derived character object), is trying to take a different
object from a third object, another character.

 Discover: occurs when an object is dropped or has
been stolen in the world and the initial owner would
like to discover where that object is now.

 Retrieve: occurs when an object would like to retrieve
a separate object in the world, but does not demand that
the desired object is necessarily stolen or retrieved in a
particular fashion.

The system will have more quest options to choose from as more
quest types are created and a user will be given a wider variety of
quest paths. A designer can limit the dilemma of the system
creating too many quest paths by only allowing the user to choose
from a smaller subset of the most relevant quests or by limiting
the number of quests that can be given. Although the interactions
themselves are important to the system as a whole, the main
feature of our implementation is how these interactions are chosen
and executed between objects. Although a user may engage in
any action at any time of their own accord, each object also
contains a set of memories, which in this case are actions that a
character has either participated in actively, or been a part of
passively. The driving example as been if character A steals from
character B, but B does not catch A in the act. These memories
are important for establishing the context in which future events
happen. At any time a character may perform a steal or kill
action, which is then translated into a self-given quest, but doing
so will directly affect their interactions with other characters.

Each object also contains a set of attributes. For this
implementation the attributes chosen were health, damage,
thievery skill and affinity. The affinity variable chosen is
essentially a relationship value (negative meaning dislike, positive
meaning like) between a user an all other characters in the world
as well as a user to the world around (just because character B
strongly dislikes character A does not mean A is negatively
perceived in the world because A may have performed far more
positive deeds than negative ones). Based on the values of these
attributes interactions are further conditioned to react accordingly.

It is important that a method for obtaining quests is defined
beyond the interactions and attributes of characters. For TRUE
STORY each character is capable of asking any other character

within the same room (the proximity limitation) for quest options.
After a request has been made, the character asked will scan
through their memories and the asking character’s memories to
find any relevant ties. Each character has two sets of memory,
which includes a long-term memory and short-term memory. This
was designed for the future implementation of memory decay.
Long-term memories are events that will always remain important
to the world. An example of a long-term memory would be if
character A assassinated the current king of the land. Character A
would maintain a long-term memory of accomplishing the act and
everyone who heard of the assassination would maintain a long-
term memory that someone had assassinated the king. Short-term
memories on the other hand are trivial memories that should only
matter for the moment. Such a memory might include if character
A stole a loaf of bread from character B. Both characters should
only maintain the memory for a short period of time.

Once memory has been properly searched, the character asked (B)
would have knowledge of any interactions they have had with the
requesting character (A) or any interactions they have learned that
the requesting character has taken over time. If A makes a request
to B, even if B has not personally interacted with A they may have
prior knowledge of A ever trying to steal something or trying to
kill someone that B is close to then B may be inclined to end all
voluntary interaction with A depending on the circumstances.
Vice versa, if A tried to steal or murder from a mutual enemy of B
then B may be more inclined to help A out.

Now that memory has been addressed, if A has made no prior
transgressions against B, the attribute values would be checked.
For instance, if B has any steal quests that could be created or that
were already created they would only be offered if A has attained
a sufficient level in their thievery attribute. B might also offer
specific kill quests on a third character if A had enough health and
a weapon that was capable of doing sufficient damage. This
shapes interaction because B may offer a kill quest to character A,
but not to character C based on their current attributes. This also
helps in driving game play much like World of Warcraft uses
levels to decide whether a player is capable of completing a quest.

It is clearly shown that all interactions done within the system
could have a direct result on future interactions. If a character A
steals from a character B they may soon become a victim of
another steal interaction that character B requests of character C.
In order to clearly demonstrate these results the main user is
allowed to control all characters within the system. This is to
simulate a multi-user environment within a single user
environment as no networking code has been implemented. The
user can switch between characters using a simple command
(switch) and then observe the memories and attributes of that
specific character. Certain characters are also seeded with pre-
scripted memories as to simulate non-playable characters that
might exist within a multi-user environment. These seeded
characters are used to drive the initial interactions before actual
users have created more memories. As stated previously, these
characters are treated like normal characters because they will
interact with the world in similar ways through memories and
interactions. This is why the user is also allowed to control these
characters. A full scale MMORPG would play out the exact same
way with the caveat that it would have much more information to
handle. Characters would still be able to interact in the exact
same ways. A full scale MMORPG may also have implemented
more meaningful interactions, which would still come in the form

of a ‘quest’ class since all interactions are required to be of a
quest form, and have better defined social roles. It may also
include more attribute values.

5.1 Program
The program itself was implemented in a Linux environment
using only C++ and a text-based world. All actions are performed
through a text prompt where commands are input. Only the room
the user is currently in is displayed to the user with its current
exits. The user can also see what other objects exist in the room
beside themselves. All the commands a user can issue are
documented and can be seen using a help command. After
beginning the simulation it is up to the user to create interactions
and see how they develop the world around them. The user is
also capable of creating specific interactions at any point in time
so they can manipulate the world as desired and view the affects.

6. Discussion
TRUE STORY has been a positive step towards the dynamic
generation of contextually linked quests. Its implementation
demonstrates that designers of persistent worlds can provide
unique content to all of its users by utilizing the constraints set
forth by our framework, however there remains a lot more to be
explored, implemented and expanded upon.

The current design of the TRUE STORY framework incorporates
some important design principles that have proved invaluable to
the framework. The first principle addressed is that the
framework is providing a method to track information in
persistent worlds to generate unique and interesting quests. This
is accomplished by utilizing history, relationships and other
constraints set forth by the implementer of the framework.
Although the current implementation only accomplishes this on a
rudimentary level it does successfully show that unique quests can
be generated solely based on user interactions with the persistent
world they are taking part in. The second principle addressed is
that the framework does not utilize any long-term goals or
conclusions to generate contextually linked quest paths. Rather it
utilizes previous experiences to try and drive future experiences in
a meaningful way. In this way the user can create an endless
chain of experiences and quests that they are able to accomplish
over time. The current implementation drives unique experiences
based on memories and relationships; however, it does not yet
drive quest paths in a meaningful way. Currently it falls on the
user to choose which quests they feel are most relevant to their
character’s past experiences. Regardless, the current
implementation does provide for unique questing experiences
even if they are not yet tied together through relevancy. Having a
quest generation tool like this is the next step to creating unique
persistent worlds that utilize a questing system.

Based on the components of the framework (memories, attributes,
actions, layers, and proximity) it may be possible to adjust the
framework to suit an interactive drama setting as well. One
example would be to adjust constraints so that the quests
presented were forced to model a story arc like the Hero’s Journey
[2]. This has not been tested; however, the design is done in such
a fashion that if constraints are properly implemented it can
accommodate almost any form of quest path generation. By
expanding the actions possible for characters and modifying the
constraint space we will be able to test how our framework adjusts
to more structured settings.

Although the current implementation demonstrates some
important aspect to dynamic quest generation there are some
important aspects that need to addressed for a larger setting. It is
clear that a multi-user environment will not affect the performance
of the system since the current implementation can be seen as a
multi-user environment. Although only one character is able to
act at a time they are all treated by the system in the exact same
manner so with multiple users the system would simply be
handling more actions at a time, not new actions however. This is
already accomplished in MMORPGs and therefore should not
pose a problem.

The biggest scalability issue comes from memory management.
As more users are infused into the system more memories and
quests will be created at a rapid rate. It is important that the
designer of the system chooses a device for deciding whether an
action or quest should be stored in memory or simply discarded.
By choosing only more important memories this memory space
can be kept manageable. Different forms of memory decay could
also be implemented to discard old memories or memories that are
no longer applicable to the world. Although this may shrink the
possibility space for dynamically generated quests with high
relevancy it would not prevent the system from generating random
quests for the sake of continuity. These random quests could help
produce attributes and possibly provide important interactions to
help generate future quests.

7. Future Work
The first component we would like to address in the future is the
lack of an online or networked version of our implementation.
Proving that this program could run efficiently on a networked
setting would be a strong step. Additionally, in the future it
would benefit the usability to add a graphical component to the
system. A graphical component is not crucial though.

On the simulation side, the main goal is to expand the current
implementation with more actions/quest types, to demonstrate the
richness of emergence that can occur through the interactions
between a simple set of quests. Also, we need to look into
creating a memory decay function for eliminating short-term
memories. We’ve already implemented an importance attribute
that will help decide whether events are important enough to
move to long-term memory and how long a memory will remain
in short-term memory before decay. We need to incorporate this
to see how it affects the believability of characters that forget past
actions.

8. REFERENCES
[1] Barber, H. 2006. Adaptive Generation of Dilemma-based

Interactive Narratives. The Ninth International Conference
on the Simulation of Adaptive Behavior.

[2] Campbell, J. September 2003. The Hero’s Journey: Joseph
Campbell on His Life and Work. New World Library; 1st

New Wo edition.

[3] Crawford, C. 2004. Chris Crawford on Interactive
Storytelling. New Riders Games.

[4] Fairclough, C. and P. Cunningham. 2004. A Multiplayer
O.P.I.A.T.E. Int. J. Intell. Games & Simulation 3(2): 54-61.

[5] Freeman, D. September 15, 2003. Creating Emotion in
Games: The Craft and Art of Emotioneering. New Riders
Games; 1st edition.

[6] Johnstone, K. June 1999. Impro for Storytellers. A Theatre
Arts Book; 1st edition.

[7] Koster, R. November 6, 2004. Theory of Fun for Game
Design. Paraglyph; 1st edition.

[8] Lebowitz, M. 1984. Creating Characters in a Story-Telling
Universe. Poetics 13; 171-194

[9] Magerko, B. 2007. A Comparative Analysis of Story
Representations for Interactive Narrative Systems. Artificial
Intelligence and Interactive Digital Entertainment
Conference.

[10] Mateas, M. and A. Stern. 2003. Façade: An Experiment in
Building a Fully-Realized Interactive Drama. Game
Developers Conference.

[11] Meehan, J. 1981. Tale Spin. In Inside Computer
Understanding, edited by R. Schank and CK Riesbeck. New
Jersey: Lawrence Erlbaum Associates.

[12] Perlin, K. and A. Goldberg. 1996. Improv: A System for
Scripting Interactive Actors in Virtual Worlds. The Improv
System Technical Report NYU Department of Computer
Science.

[13] Propp, V. 1969. Morphology of the Folktale. Trans.
Laurence Scott. Ed. Louis A. Wagner. 2nd edition. Univ. of
Texas Press.

[14] Riedl, M. and A. Stern. 2006. Believable Agents and
Intelligent Story Adaptation for Interactive Storytelling. 3rd

International Conference on Technologies for Interactive
Digital Storytelling and Entertainment, Darmstadt, DE.

[15] Rizzo, P., M. V. Veloso, M. Miceli, and A. Cesta. 1999.
Goal-Based Personalities and Social Behaviors in Believable
Agents. Applied Artificial Intelligence, 13:239-271.

[16] Roberts, D. L., A. S. Cantino, C. L. Isbell. 2007. Player
Autonomy versus Designer Intent: A Case Study of
Interactive Tour Guides. Artificial Intelligence and
Interactive Digital Entertainment Conference.

[17] Sharma, M., S. Ontañón, C. Strong, M. Mehta, and A. Ram.
2007. Towards Player Preference Modeling for Drama
Management in Interactive Stories. Twentieth International
Florida Artificial Intelligence Research Society Conference.

[18] Thue, D., V. Bulitko, M. Spetch, E. Wasylishen. 2007.
Interactive Storytelling: A Player Modeling Approach.
Artificial Intelligence and Interactive Digital Entertainment
Conference.

[19] Weyhrauch, P. 1997. Guiding Interactive Drama. Ph.D.
thesis, Tech report CMU-CS-97-109, Carnegie Mellon
University.

[20] Young, R. M., M. Riedl, M. Branly, A. Jhala, R. J. Martin
and C. J. Saretto. 2004. An Architecture for Integrating
Plan-based Behavior Generation with Interactive Game
Environments. Journal of Game Development 1(1): 51-70.

