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Abstract 
This paper describes the creation of a digital improvisational 
theatre game, called Party Quirks, that allows a human user 
to improvise a scene with synthetic actors according to the 
rules of the real-world Party Quirks improv game. The AI 
actor behaviors are based on our study of communication 
strategies between real-life actors on stage and the fuzzy 
concepts that they employ to define and portray characters. 
This paper describes the underlying fuzzy concepts used to 
enable reasoning in ambiguous environments, like improv 
theatre. It also details the development of content for the 
system, which involved the creation of a system for 
animation authoring, design for efficient data reuse, and a 
work flow centered on Google Docs enabling parallel data 
entry and rapid iteration.  

Introduction1 
Improvisational theatre (or “improv”) has been a source of 
inspiration for approaches in interactive narrative since 
Hayes-Roth and Perlin’s works in the early 1990s (Hayes-
Roth and Van Gent 1996; Perlin and Goldberg 1996). 
More recent approaches have similarly used aspects of 
improvisational acting, such as the concept of status (i.e. 
how powerful or meek a character is on stage) (Harger 
2008) or object creation (i.e. introducing objects in the 
world that have not been explicitly stated as not existing 
there) (Swartjes, Kruizinga, and Theune 2008), to drive 
interactive narrative works. However, these approaches 
have been limited in scope because we lack a formal 
understanding of the processes involved in improvisational 
acting. In other words, it is difficult to build computational 
improv actors because we do not understand the 
phenomenon of improv acting well enough. 

The work presented in this paper introduces the 
knowledge and processes related to character creation that 
we observed in our study of the cognitive processes 
involved in human improvisation (Magerko et al. 2009; 
Fuller and Magerko 2011). Our study of human 
improvisers has involved actors engaging in different 
improv games at our request, both in lab settings and in 
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professional theatre performances. After the engaging in 
these games, we interviewed actors using retrospective 
protocol, group, and, in the case of a professional 
performance, semi-structured interview techniques. A 
grounded theory (i.e. data-driven instead of hypothesis-
driven) approach to data analysis has uncovered several 
main facets of improvisation that are relevant to building 
computational agents. The first is the concept of how 
improvisers build shared mental models (i.e. how actors 
“get on the same page” during a scene), which is also 
called building cognitive consensus. We have explored this 
phenomenon formally in other work and have found that it 
is a ubiquitous aspect of improvisation. Actors are 
perpetually trying to reach a shared understanding on stage 
between each other and between themselves and the 
audience. The second is the construction of narrative on 
stage. Many improv games have a strong storytelling 
component, which results in the improvisers collaborating 
in real-time on stage to develop characters, a relationship 
between them, dramatic conflicts, etc. as part of the 
improvised performance in front of an audience. A third 
major aspect of our findings is the referents used by 
improvisers (i.e. the constraints for a scene and tacit 
knowledge about improvisation that they employ), which 
has so far been beyond the scope of our work in terms of 
rigorous analysis or computational modeling. 

Both the general improv process of constructing shared 
mental models and the more specific process of 
improvising narratives (which often involves creating 
shared mental models) require handling ambiguity on 
stage. If an actor A comes on stage, peering at something, 
and saying “Hrrrmmm, very interesting, very 
interesting…” another actor B may come on stage and 
interpret the utterance as A indicating that they are a 
clinician, or perhaps a scientist, or even a detective. 
Improvisation is a continuous practice of instantiating and 
interpreting symbols without clear mappings for those 
symbols. As improvisers work on building a shared mental 
model, they make progress on agreeing on said mappings 
(e.g. who is playing what character, where they are, what 
they are doing together, what the main conflict in the story 
is, etc.). This ability to reason about ambiguous symbols in 
a collaboratively constructed story environment is quite 
unlike the traditional methods used for story representation 



in the computational world of interactive narrative (e.g. 
planning operators, beats, story graphs, etc.). 

This paper presents the current formalism that the 
Digital Improv Project uses to handle ambiguity and 
construct shared mental models. This formalism is based in 
Lakoff’s concepts of categories and human cognition 
(Lakoff 1989) and the computational approaches employed 
in fuzzy logic (Bellman and Zadeh 1970; Alexander 2002). 
This paper presents this formalism within the context of a 
working digital improv installation called Party Quirks. 

A typical game of Party Quirks involves four players: 
one who plays the role of party host, and three others who 
play as party guests. When the game begins, the host 
briefly leaves the room, at which point each party guest is 
assigned a “quirk” – some special trait for each guest that 
is public knowledge to the guest actors and the audience 
but not the party host. The host player then returns and, 
within the context of hosting a party, aims to figure out 
what quirk each guest is portraying through their 
interactions. A guest typically leaves the scene when the 
host has successfully guessed their quirk. The game ends 
when there are no guests remaining or when too much time 
has passed. In the case of time running out, the presenter of 
the improv show may prompt the party host to guess the 
quirks of any remaining guests. 

The digital version of this improv game consists of 
software agents acting independently to emulate the 
communication processes and reasoning about ambiguity 
that live actors demonstrated during performances in our 
empirical studies (see Magerko et al. 2009 for an overview 
of the empirical methods used). A human controls the host 
in the virtual scene by using a menu-based system on an 
iPad, which allows the user to stand and physically take 
part in the virtual performance. The iPad’s touchscreen 
also enables buttons to be dynamically labeled, reducing 
the complexity of the interface by providing only the 
interactions needed by the user at a given time. This paper 
explains the underlying reasoning done by the AI actors, 
provides an example of a system run, and reviews 
evaluations of the work. 

Modeling Character Prototypes 
The authoring for a digital version of Party Quirks 
involves the creation of character prototypes (e.g. 
Cowboy) as possible quirks to portray. A prototype refers 
to an idealized, socially recognizable construct that maps 
to a certain kind of character (Lakoff 1989). The criteria 
for selecting prototypes for inclusion were a) general 
recognizability (e.g. Cowboy, Witch, and Mob Boss), b) 
distinctiveness (i.e. Town Drunk and Mad Scientist have 
relatively little in common), and c) potential for ambiguous 
overlap of attributes (e.g. Pirate, Knight, and Ninja all use 
swords). 

 
Figure 1. Degrees of membership between prototypes, 

attributes, and actions. Ninja has very strong (1.0) 
membership in speed and medium (0.4) membership in 
uses_magic. A Ninja can execute the fades into the shadows 
action because it is available to prototypes that have a 
uses_magic value between 0.4 and 0.7. 

 
Each prototype is defined as a collection of properties 

with varying degrees of membership (DOM) in sets that 
represent character attributes (see the top half of Figure 1).  
For example, Ninja has a low value for clumsiness but a 
high value for sword_use, whereas Town Drunk has 
opposite values. This approach is similar to how we have 
seen portrayals of prototypes in our human data and 
matches well to contemporary thoughts on how humans 
categorize fuzzy concepts (Lakoff 1989; Rosch and Lloyd 
1978). This layer of abstraction is important because 
expressive actions often imply DOM for multiple attributes 
(e.g. whether a sword is used in a clumsy or adept manner 
communicates multiple association values.  

Attributes are adjectives that define a prototype. Actions 
are subsequently the physical acts that are used to 
communicate attributes and are associated with at least one 
<attribute, DOM range> pair (see the bottom half of Figure 
1). For example, <uses_magic, 0.7-1.0> implies a high 
association with magic usage, which is connected to the 
action appearSuddenly. This same action also has a high 
association with the attribute moves_stealthily, and 
represents the range <moves_stealthily, 0.7-1.0>. Any 
character with uses_magic or moves_stealthily between 
these values can therefore execute the appearSuddenly 
action on stage. This provides both a modular, data-driven 
approach to authoring character behaviors and a shared 
resource for all characters to draw from. Actions are 
authored with four components: 

1. 1.    The name of the action 
2. The set of attributes and attribute ranges that this 

action is appropriate for (e.g. swashbuckling 



action would be associated with <uses_sword, 
0.7-1.0>) 

3. Environmental requirements and consequences 
(discussed below) 

4. Dialogue associated with performing this action 
5. The visual animation for acting in the virtual 

environment  
Prototype / attribute information is encoded in a Google 
Docs spreadsheet, which is read into the system at run-
time. This allows us to easily change DOM values, add 
actions, reassign animations, etc., without touching the 
Party Quirks codebase.  

We use a series of Boolean variables to describe the 
state of the environment in a scene. However, unlike 
normal boolean variables, their values are not always 
known. Party Quirks, like much of improve, operates under 
an open world assumption similar to the approach used in 
(Swartjes 2010), which states that before a variable is 
observed its value is unknown. In this context, the open 
world assumption means, if a particular aspect of the 
environment has not been explicitly stated to be true or 
false, an agent can observe it to be whichever value it 
prefers as required. Actions can thus have requirements 
and consequences for the environment. For example, the 
action feedAnimal has the prerequisite AnimalExists, 
meaning it must either already have been explicitly stated 
that animals are in the scene or nobody can have 
mentioned animals at all, allowing the agent to introduce 
an animal into the scene without disrupting any previous 
statements. After the agent has executed the action, the 
AnimalExists variable changes to true, alerting the other 
agents to the existence of an animal (as implemented, these 
variables are currently shared between agents though 
future plans intend for them to be part of each agent’s 
individual knowledge base). 

Character portrayal is currently solely based on the 
relationship between prototypes, attributes, and actions that 
portray attributes. This does not currently address issues in 
goal-based behavior, emotive performance, narrative 
reasoning, etc., mainly because our work in 
improvisational characters is iterative. We explicitly build 
small agents as a means of providing a computational lens 
for better understanding our data.  Building these agents 
provides for a cyclic process of data collection / analysis, 
building agents, and a repeat of this process with a better 
understanding of what to look for in our data or what kind 
of data we need more of, which in turn enables us to build 
more complex agents, etc. (Magerko, Fiesler, and Baumer 
2010). We chose Party Quirks as our initial domain 
because it lacks complicating factors (such as narrative 
development) that make building a working agent too 
monolithic and difficult without first understanding the 
myriad working parts that go into creating improvising 
agents.  

Ambiguity on Stage 

Calculating Ambiguity 

The primary benefit of using fuzzy membership of sets is 
that it captures the ambiguity inherent in improvisational 
theatre. For instance, if an actor comes onto stage and 
makes takes a long drink out of a make believe bottle, that 
actor may be thinking about portraying a “town drunk,” but 
that action is open to interpretation to other actors involved 
in the scene.  They could reasonable interpret him to be a 
pirate, rock star, or perhaps a politician.  In other words, 
knowledge presented on stage can have varying degrees of 
concreteness to them and that can be used by improvisers 
to misinterpret an actor’s intentions, take a scene in a 
surprising direction, or even intentionally push an actor in 
a different direction than they had intended.  

The ambiguity of a particular value for an attribute 
represents how easy it is to determine the agent’s prototype 
from that <attribute, value> pair. As such, the ambiguity of 
a pair is dependent on how far the value is from the 
average value for that attribute (how easy it is to tell it is 
unusual) and how many other prototypes have a similar 
value (how many possible prototypes could it be confused 
with). After calculation, it is normalized according to the 
other values for the prototype to allow for easy 
comparison. We define the ambiguity of a data point n for 
the set N of all values of a given attribute as: 

 
An = (1 – |avg(N) – n|) / (|all values| - |values within 1 σ|) 

 
Normalization step:  
 

NAn = (An – min(A)) / (max(A) – min(A)) 
 

In other words, the ambiguity of an attribute value n is (1-
absolute value of the average of all values for the attribute 
– n) / (the set of all values for the given attribute – the set 
of values for the attribute within one standard deviation, 
i.e. the number of values outside one standard deviation of 
n).  This value is then normalized according to the values 
for the prototype’s other attributes (the smallest value 
according to the above equation becomes 0, the largest 
becomes 1, and the values in between are assigned 
according to their distance between the minimum and 
maximum).  

An action’s ambiguity is based on the number of 
attributes it is associated with and the number of 
prototypes with appropriate values. For example, 
appearSuddenly has two associated attributes (uses_magic 
and moves_stealthily) and six prototypes with appropriate 
values for at least one of those attributes. The formula we 
use for calculating action ambiguity is simply (number of 
associated attributes) * (number of relevant prototypes). 



Decision Making Based on Ambiguity Values 

Actors in Party Quirks can reason about this ambiguity to 
give the host a natural path of discovery for the scene. Our 
agents reason about this by comparing authored data to 
determine the relative ambiguity of associations with each 
prototype. For example, most characters have a low degree 
of membership for bites_people, so this information is very 
ambiguous and does little to clarify an actor’s quirk. 
Conversely, because only a few prototypes (Kindergartner 
and Caveman) have a high DOM for bites_people, that 
high DOM information has low ambiguity and can steer 
the host to fewer potential prototype matches. Therefore, 
an agent portraying the Caveman prototype may avoid 
executing an action associated with the bites_people 
attribute early on since it represents a very unique 
<attribute, value> pair. Portraying it too early would make 
it easy for the host to guess Caveman, causing that actor to 
exit early in the scene. 

The calculated ambiguity values also provide the means 
to determine how much the host’s interactions indicate 
their convergence with the “reality” of the scene. In other 
words, the actions that a human host executes indicate how 
close they are to guessing a guest’s quirk (i.e. building a 
shared mental model or reaching cognitive consensus 
(Fuller and Magerko 2011)).  

Users, playing as the host, have the opportunity to 
interact with the agents. They can guess the agent’s 
prototypes, ask questions or make assumptions about 
individual attributes, prompt the guest with information 
about the scene, or ask for help in various forms. 
Whenever the host interacts with a guest agent, the agent 
compares what the host did to the corresponding DOM 
values. For example, the prototype Town Drunk has a 
DOM of 0.5 for facial_hair. If the host asks if a guest with 
the prototype Town Drunk has a middle value for the 
attribute facial_hair, the agent sees the host’s assumption 
is correct and thus notes the interaction as being 
convergent, indicating the host is on the right track to 
guessing the prototype. The convergence function also 
accounts for the ambiguity of the different attributes. For 
example, if the host asks if the Town Drunk has a low 
value for sword_use, while the assumption is correct, the 
value is common, and thus less convergent than if the 
question had been for a high value of clumsiness, which 
also correct but less common. This means interactions that 
give more information are more convergent, as they show 
the host is closer to the correct answer. It normalizes these 
factors to a value representing how well the host’s action 
converges with the guest’s actual quirk, with higher values 
indicating the host is on the right track and lower values 
indicating the host needs more help. 

Convergence also plays a role in the kind of feedback 
the host receives.  When the host interacts with an agent, 
an “applause” sound effect plays appropriate to the 

convergence value. A lot of applause indicates the host is 
close, whereas little to no applause lets the host know they 
may not be guessing correctly.  The decision to incorporate 
this feedback element was based directly on feedback 
given during public demo sessions of an early Party Quirks 
prototype. 

Character Portrayal Strategies 

Agents can reason about the type of behaviors their 
character should display to represent their prototype. They 
have several options derived from our empirical 
observations of improv actors (Fuller and Magerko 2011) 
for how they can demonstrate their character’s quirk. At 
the moment, these techniques can either be pre-selected by 
whoever is running the system or randomly selected at 
runtime.  We have not been able to reliably discern the 
heuristic information that improvisers use for selecting 
from these strategies. 

In one common technique, a guest presents ambiguous 
clues early on and gets more specific with time, which we 
call reverse scaffolding. The purpose of reverse scaffolding 
is to keep a scene interesting; there would be little point to 
the game if the host guessed the guest’s quirk immediately, 
so actors like to start with less obvious clues to keep the 
host guessing (note: this process is alluded to in the earlier 
section). However, the game is also more satisfying when 
the host is successful, so actors tend to get more obvious 
over time, giving very specific clues near the end of the 
scene.  

Another technique, usually chosen for more humorous 
purposes, is caricature, where a guest takes the quirk they 
have been assigned and exaggerates it as much as possible, 
creating more comedic situations. This involves selecting 
very low ambiguous actions at the onset.  Computationally, 
we accomplish this technique by reducing the pool of 
potential attributes to the least ambiguous, then selecting 
only the least ambiguous action for each attribute. 

Finally, guests may choose to take an alternative 
approach to portraying their character and oppose a key 
attribute, which computationally means the opposed 
attribute’s DOM value is inverted (the new value is equal 
to 1.0 minus the old value), the guest chooses the most 
unambiguous actions when portraying the attribute, and the 
attribute is chosen for presentation (i.e. a display to the 
host) more often to emphasize it. One example of this 
technique is a character with the quirk Pirate who chooses 
to portray it by behaving according to the prototype except 
with a low value of sword_use instead of the normally 
characteristic high value.  

Once an agent has decided how to portray its quirk 
(either by random selection or having it pre-determined), it 
will join the scene and make offers of information to 
encourage the host to guess the prototype. It does this by 



choosing and executing actions, with or without prompting 
from the host.  The decisions an agent makes are 
dependent on whether or not the host has directly 
interacted with it, as described below. 

If a host has not spoken directly to the agent, the agent 
may choose to continue performing its idle behavior 
(basically just walking around) or to execute an action 
anyway. Presenting an action in this case represents a 
natural behavior for the character prototype, which is 
something a character would do without provocation. The 
algorithm for such a situation is as follows: 

 
1. The agent considers its prototype and the DOM 

values it has for each attribute compared to the 
DOM values other prototypes have for those 
attributes. It calculates how ambiguous its values 
are for each attribute, then disregards the most 
ambiguous attributes (the ones which, essentially, 
have nothing to do with defining the prototype). 

2. Once it has decided which attributes are important, 
the agent looks at the <attribute, DOM range> pairs 
defining each action in order to create a pool of 
possible actions – that is, every action it can do 
where the value for one of its important attributes 
falls into the range specified by that action (see the 
Modeling Character Prototypes section above for a 
definition of actions). If the agent is portraying a 
caricature of its prototype, it selects only the least 
ambiguous actions for each relevant attribute. 

3. If the agent is not reverse scaffolding, it chooses an 
action probabilistically according to how recently 
each has been executed (the more time has passed 
since an action has been presented, the more likely 
it is to be chosen again). If the agent is reverse 
scaffolding, however, it bases its action selection on 
the ambiguities of the actions. First, it orders the 
actions in order of decreasing ambiguity. The agent 
calculates how much time it has spent on stage 
compared to the amount of time left in the scene, 
then applies that proportion to the number of 
actions in the list (so, if three minutes have passed 
in a five minute scene and there are ten actions in 
the list, it would pick the sixth position). It 
probabilistically selects an action in the pool, with 
the probability of each action being chosen based 
on a Gaussian distribution centered on the position 
designated by the proportion. 
 

Agents also account for the current state of the 
environment. Any action which has a requirement that is 
currently opposed (e.g. if an action requires food in the 
scene, but FoodExists has been observed as False) is not 
allowed for consideration. Also, the probabilities of actions 
that have environmental requirements are adjusted 
according to how recently the relevant environmental 

variable has been observed; the more recent the 
observation, the more likely the action is to be selected. 
This simulates a recency effect in which people are more 
likely to remember and/or react to more recent pieces of 
information than older ones. 

If the host has indeed prompted the guest with an 
interaction of some sort, the agent’s response depends on 
the nature of the host’s communication. The host can ask 
the guest for their value for a particular attribute, which is 
called a Targeted Offer based on our research on shared 
mental models (Fuller and Magerko 2011), such as asking 
“What do you think about using swords?” In this case, the 
agent responds with an action associated with their value 
for the requested attribute. If the host attempts to verify 
their concept of a guest’s value for a particular attribute, 
called a Verification, the agent responds with a statement 
confirming or denying the assertion and a presentation to 
demonstrate its actual value. For example, if the guest 
agent has the prototype Terminator and the host makes the 
statement “I think you like to eat a lot,” the guest might 
respond with “No, I do not require food” and a refusal 
animation. The host may try to confirm the most recent 
presentation the guest made as being associated with a 
particular attribute (called a Confirmation), in which case, 
again, the agent will answer with a confirmation or denial 
and a presentation (i.e. a display to the host) for the 
relevant attribute. In some cases, the host may get 
frustrated and ask for better clues, called a Clarification 
Request, and in response the guest will shrink the possible 
action pool to be less ambiguous and make a new 
presentation. The host can alter the environment if they 
wish by making an Environmental Offer about one of the 
various environment variables, in which case the guest 
agent will respond with an action relating to the new 
variable value if they can and a normal action if they 
cannot. Finally, when the host thinks they know the guest’s 
quirk, they can make a guess. If the guess is correct, the 
agent acknowledges the host’s success and exits the scene. 
If, however, the guess was incorrect, the agent considers its 
prototype in relation to the guessed one. It selects an 
attribute that is both significantly different between the two 
prototypes and significantly un-ambiguous for the correct 
prototype and then presents an action associated with the 
chosen attribute (e.g. The guest says, “No, I’m not a ninja,” 
then knocks something over to demonstrate clumsiness). 
This indicates that the guess was incorrect and gives 
justification for the difference. 

All of these responses to the host also consider the 
ambiguity of the possible options in relation to the 
ambiguity of what has already happened in the scene. The 
agent attempts to choose an action that is less ambiguous if 
at all possible in order to push the host towards the correct 
conclusion. If the previous actions are less ambiguous than 
any of the options for response (such as if the agent is 
using caricature, where all presentations are as 



unambiguous as possible), the agent picks the least 
ambiguous. 

Multiple-Agent Portrayals 

In our studies of improv actors, actors occasionally helped 
emphasize another guest’s qualities in order to help the 
host. These interactions name the helped guest directly and 
target an attribute very specific to that guest’s prototype, so 
as to give as much aid as possible. We call these specific 
joint behaviours guest-to-guest interactions since they 
involve interactions between a pair of guests to portray 
information about a single guest. Guest-to-guest 
interactions in our Party Quirks system are authored as 
joint dialogue and animation instances that can be triggered 
when the host is struggling. Two general situations tend to 
trigger real-life guest-to-guest interactions, which we have 
modelled. The first occurs when one guest has not 
interacted with the host for an extended period of time, 
which often happens if the host focuses on one actor 
instead of interacting with everyone on stage. The second 
situation happens when the game is nearly over, the host is 
focusing on one actor, and the host-guest interactions are 
significantly divergent from that actor’s quirk.  

Example 
Below is a simplified scenario involving a single guest 
(multiple guests make the example too long for the 
constraints of publishing this article) as a demonstration of 
how users interact with the agents: 

 
The stage on screen shows no guests present until the 

user presses “Be the Host” on the iPad to begin. The guest 
agent then appears on the projected virtual stage. The guest 
has been randomly assigned a prototype, in this case 
Pirate. The agent chooses to use reverse scaffolding to 
portray its character. 

The user is presented with buttons on the iPad to ask the 
virtual guest about attributes (e.g. attractiveness, 
fearlessness, etc.). The user decides to defer, waiting until 
the virtual guest volunteers information before asking the 
guest something. 

The virtual guest pretends to be playing cards. Text 
appears under the stage, saying, “I’ve got a full house. 
Read’em and weep.” This action provides information 
about multiple attributes, including playfulness and 
willingness to gamble. 

The user, to confirm whether this previous action was 
about gambling (implying a prototype such as Mob Boss) 
rather than playfulness (e.g. Kindergartener) chooses to 
ask about the attribute gambles. On the iPad, the user 
selects to ask a question about the guest’s gambling 
activities, and asks whether the guest gambles a lot. 

The guest gestures aggressively, with text underneath, 
“Yes. I won that money fair and square. Well, sort of...” 
This communication includes two components: 
confirmation that the host was correct, and a new action 
conveying related information. A small amount of applause 
plays, indicating ‘Gambles a lot’ is converging on the 
guest’s prototype but that there are also attributes more 
relevant to this guest that the host could talk about. 

The user chooses Guess Identity on the iPad to see which 
prototypes might gamble a lot. These options are 
displayed: 

 
Wizard Knight  Ninja 
Pirate  Terminator Sumo Wrestler 
Superhero Mob Boss Town Drunk 
Witch  Princess  Normal Person 
Caveman Kindergartner Grandmother 
Cowboy Mad Scientist Alien Invader 
 
Suspecting that Town Drunk, Pirate, Mob Boss, and 

Cowboy would be most likely to gamble, the user thinks of 
an attribute to narrow down that list. Under Possessions in 
the iPad menu, Sword is an option, which the user 
recognizes as unique to Pirate. The user follows the menus 
to inquire whether the virtual guest often uses a sword. 

In response, the guest moves both hands to an imagined 
hilt. Text below clarifies, “Yes. Make one wrong move and 
I’ll finish you off.” The host hears a burst of applause 
because this interaction was highly significant to the 
guest’s prototype and has a high convergence value. 

The user returns to Guess Identity, and guesses Pirate. 
Because the guess is correct, the virtual guest leaves 

stage. The text, “That is correct!” is displayed on-screen, 
and applause plays to confirm the host’s guess.  

Evaluation 
The evaluation of the Party Quirks prototype has been a 
difficult process, as is inherent for interactive narrative 
systems. An evaluation of an interactive narrative system, 
when it occurs, typically takes the form of lesion 
experiments (e.g. “our system does A, so we provided the 
system with and without A to study participants and 
measured the qualitative and / or qualitative differences”) 
or the subjective measure of public acceptance (e.g. “we 
have over 5,000 downloads of our system). The most 
common approach to evaluation is unfortunately to avoid 
the issue altogether, due to the complex issues in even 
creating a working, full-fledged system.  

Evaluation of the Party Quirks prototype was done in 
two stages. The first stage of evaluation focused on 
usability and interface testing. There were multiple issues 
at play when building this system, such as getting novices 
accustomed to playing the improv game, using an iPad to 
help the novices interact in a more naturalistic setting (e.g. 



standing and facing the virtual actors on a projection), 
having an appropriate representation of shared mental 
model moves for the user to select from, and having users 
actually attend to what was occurring on the projected 
virtual stage as opposed to continuously staring at the iPad. 

The second stage of evaluation was the formal 
submission of the system to the Chicago Improv Festival 
(CIF), a 13-year-old festival that hosts professional improv 
troupes from all over the world. Following the same 
guidelines as any other improv troupe, we submitted a 
video of lab members using the Party Quirks application. 
Party Quirks was formally accepted based on a review by 
the experts judging the submissions and was presented as a 
CIF performance at the ComedySportz Theatre as a three-
day installation. 

The evaluation of submitting to an improv festival has 
both its merits and drawbacks. The positive side of this 
evaluation was that it was put through the same rigors as a 
human improv troupe for acceptance into a major theatre 
festival. This has a high benchmark for quality, compared 
to the number of downloads for a system, for instance, 
which says nothing about how much people enjoyed it and 
what their backgrounds for judging works is. On the other 
hand, the result of this kind of evaluation is highly 
uninformative. It produces a Boolean result of “Accepted” 
or “Not accepted,” without any further detail as to why the 
result occurred. At this stage of the work, which is still in a 
preliminary stage to buttress future work, we are satisfied 
with the outcome as we prepare for larger scale systems.  

The usability issues that we tested are of particular 
importance as interaction with virtual characters, especially 
without an avatar, is particularly challenging. We are 
dedicated to avoiding a “point and click” approach because 
we are invested in creating virtual theatre experiences that 
mimic real-world improvisation with human actors. 
However, as we build more complex agents, the medium 
that the performances take place in will be heavily dictated 
by the kinds of interactions that medium affords.  

Discussion 
Our implementation of the improv game Party Quirks has 
led to the creation of a new kind of digital game: a mixed-
initiative theatre game where AI and humans can actively 
participate in an improv game together. While we are 
encouraged by the initial work done in Party Quirks in 
representing character prototypes, the process of building 
shared mental models, and an initial communication 
framework for interacting with improvisational characters, 
this initial system is not without its drawbacks. Users of 
the system at the Chicago Improv Festival were generally 
pleased and excited to use the system. However, users 
often got stuck just guessing repeatedly instead of making 
use of the other moves common in performances. This 
points to a major issue of presence in the system – users do 

not act like they are performing with the actors on a virtual 
stage, but like they are prodding a system to see how it 
responds. The virtual actors give an often-entertaining 
response with any guess, which provokes the user to guess 
again instead of selecting other moves. Future work in 
interface design, such as using voice commands or gesture 
recognition, may help actively involve the user in the 
performance space rather than acting outside of it and 
getting stuck in the most convenient menu option. 

One common misconception of the Party Quirks system 
is that it is an isomorph to AI approaches to 20 Questions, 
the game where one player answers “yes” or “no” 
questions from one or more people who are trying to guess 
the object they have in mind. AI approaches to this 
problem generally involve optimal decisions about 
information gain. Our approach to cognitive convergence 
in Party Quirks, and in digital improvisation in general, a) 
is not concerned with optimality, to the extent that agents 
will portray actions that “push” the human host in a 
direction without jumping straight to a solution, b) 
employs the reverse scaffolding strategy of being vague 
early on in a scene and more heavy-handed as time goes by 
(in general), and c) our scenario involves the human doing 
the guessing as opposed to the AI, though one could easily 
conceive switching roles.  

We have considered building AI that plays as the host, 
letting a human user or users play as guests. While that 
may make the Party Quirks experience a more complete 
one, the system’s purpose is still to serve as a prototype for 
iterative research on building improvisational agents. This 
system was built to explore the process of shared mental 
models and character portrayal, which we have done. 
Future efforts will be focused on applying what we have 
learned to the construction of more complex agents. 

The agents themselves are fairly generalizable in terms 
of the number of attributes that can be used to describe 
characters and the different mappings from attribute value 
ranges to actions that can occur. This does represent an 
authoring bottleneck, but one that can potentially be 
resolved with the use of crowdsourcing techniques such as 
Amazon’s Mechanical Turk. We are currently running a 
crowdsourcing data collection to help populate our 
description of the story elements related to a Western-
themed story world called TinyWest. 

The main limitation with the definition of character 
portrayals as they currently exist is that they are not 
mutable. The only characters the agent can be portray in a 
scene are the ones for which a prototype has already been 
fully authored. Prototypes cannot be altered, augmented, or 
combined. For instance, prototypes cannot be blended 
together to create new prototypes (e.g. a mosquito that acts 
like a drunk when it drinks blood) nor can they be created 
with some antithetical property (e.g. a plumber who is 
afraid of water). Our initial work focused on alternate 
portrayal techniques like negation, where a prototype with 
an extreme attribute value has that value inverted, which 



relies on authoring an “afraid of water” attributes to create 
“a plumber who is afraid of water.” However, even if that 
approach is satisfactory, it does not answer how to create 
amalgams of different prototypes, like mosquito and drunk. 
This points to the need for future work to focus on how 
agents can employ the process of conceptual blending 
(Fauconnier and Turner 2003). 
Another major limitation of these improv agents is that 
they have no concept of narrative. They are incapable of 
constructing a story or having dialogue acts that logically 
progress over time. One possible approach to this would be 
to create joint plans that could be selected and performed 
based on user actions, as seen in Façade (Mateas and Stern 
2002), but that would hinder our goal of equal co-creation 
between humans and AI agents (i.e. the computer would 
have privileged pre-authored story knowledge rather than 
both the computer and human starting off as equals in the 
story creation process). The narrative limitations of the 
Party Quirks agents have fueled our current research 
agenda of exploring conceptual models of equal mixed-
initiative collaborative story construction (i.e. AI and 
humans are both on the virtual stage and equally share 
responsibility in constructing the story). Continuing 
research explores how agents can set up the initial 
elements of a scene (e.g. where the scene takes place, who 
the characters are, what joint activity they are doing 
together, etc.) and how agents can find the “tilt” for the 
scene (i.e. the main dramatic focus of the scene). This 
work directly builds on what we have learned from 
building the Party Quirks installation in terms of how to 
interact with agents, the fuzzy knowledge formalism for 
representing ambiguity in the world, and the construction 
of support tools for creating animated improvisational 
agents. The future of this work will be a synthesis of these 
lessons learned from Party Quirks, resulting in a troupe of 
synthetic improvisers than can jointly construct narratives 
on stage with or without a human equal acting with them. 

The fuzzy approach to agents for Game AI in general 
has yielded promising avenues for reuse. While we have 
currently applied it to the prototype definition of 
characters, we have preliminarily found that it fits well for 
prototypes of the other elements of a scene, such as 
character relationships, joint activities, and the associations 
between scene elements, such as the association between 
motions on stage and the semantic actions those motions 
are associated with. We have also begun to explore its use 
in non-improv related settings that deal with semantic 
ambiguity, such as the surrealistic guessing game DixIt, 
which involves providing clues to other game players that 
are ambiguous but not too ambiguous so that some people 
(i.e. at least one player) understand the clue but not 
everyone. Our model of fuzzy semantic descriptions and 
communication based on ambiguity levels seems perfect 
for this kind of environment and potentially other game 
situations that involve communicating fuzzy concepts.  
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