
Turn-Taking and Chatting in Collaborative Music Live Coding
Anna Xambó1,2, Pratik Shah3, Gerard Roma2,1, Jason Freeman1 and Brian Magerko2

1Center for Music Technology, Georgia Institute of Technology
2 Digital Media Program, Georgia Institute of Technology

3 School of Interactive Computing, Georgia Institute of Technology
Atlanta, Georgia, USA

{anna.xambo,pratikshah,gerard.roma,jason.freeman,magerko}@gatech.edu

ABSTRACT
Co-located collaborative live coding is a potential approach to net-
work music and to the music improvisation practice known as live
coding. A common strategy to support communication between
live coders and the audience is the use of a chat window. How-
ever, paying attention to simultaneous multi-user actions, such as
chat texts and code, can be too demanding to follow. In this paper,
we explore collaborative music live coding (CMLC) using the live
coding environment and pedagogical tool EarSketch. In particular,
we examine the use of turn-taking and a customized chat window
inspired by the practice of pair programming, a team-based strat-
egy to efficiently solving computational problems. Our approach to
CMLC also aims at facilitating the understanding of this practice to
the audience. We conclude discussing the benefits of this approach
in both performance and educational settings.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools; Computer supported cooper-
ative work; • Social and professional topics → Computing ed-
ucation;

KEYWORDS
Live coding, collaboration, CSCW, pair programming
ACM Reference Format:
Anna Xambó1,2, Pratik Shah3, Gerard Roma2,1, Jason Freeman1 and Brian
Magerko2. 2017. Turn-Taking and Chatting in Collaborative Music Live
Coding. In Proceedings of AM ’17, London, United Kingdom, August 23–26,
2017, 5 pages.
https://doi.org/10.1145/3123514.3123519

1 INTRODUCTION
Live coding and collaboration is a promising approach to the estab-
lished discipline of computer-supported collaborative work (CSCW),
but it is still unclear how to best support collaboration: shall live
coders work in their different environments, or shall they work
on the same? Shall they share code and mutually modify others’

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AM ’17, August 23–26, 2017, London, United Kingdom
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5373-1/17/08. . . $15.00
https://doi.org/10.1145/3123514.3123519

Figure 1: Approach to trio live coding.

code, or shall they keep their code as an individual, unmodifiable
contribution? Among the different potential configurations to col-
laborative live coding, pair programming is a well-known practice
in CS education and industry that organizes the group workflow in
a turn-taking fashion.

In this paper, we explore the benefits of supporting communi-
cation features to turn-taking and pair programming in EarSketch
[10], a live coding environment and educational tool. We particu-
larly explore the use of a chat window and a shared code editor
(similar to Google Docs-like collaborative editing) in co-located
pair programming with a group of two and three users respectively.

Our main research question is how do music live coders collabo-
rate, and what design paradigms for live coding tools can effectively
support these collaboration modes? In particular, we aim at examin-
ing whether and how turn-taking supports collaborative live coding.
We are interested in understanding: (1) what are the tasks under-
taken by the different collaborators based on the pair programming
model of driver vs navigator(s); (2) what are the differences between
the configurations of one driver vs one navigator and one driver vs
two navigators; (3) whether a chat window is an effective mecha-
nism for communication and, if so, how it is used; and (4) whether
using hashtags in the chat window is helpful in a collaborative
session. We adopt an autoethnographic approach already used for
understanding a live coding environment [17] because it can help
to gain a first insight from a live coder perspective.

This study is a follow-up of the study reported in [26]. In the prior
study, we discussed the benefits of co-located collaborative music
live coding (CMLC) in the classroom and proposed three approaches

https://doi.org/10.1145/3123514.3123519
https://doi.org/10.1145/3123514.3123519

AM ’17, August 23–26, 2017, London, United Kingdom A. Xambó et al.

to real-time collaboration: (1) a shared script accessed from a sin-
gle terminal in turns (live pair programming); (2) a shared script
accessed from multiple individual terminals at any time (multiple
live coding); and (3) a shared script accessed from two individual
terminals at any time (pair live coding). In this paper, we explore
a merged version of these three approaches to CMLC (see Fig. 1).
Each user has an individual terminal like in pair or multiple live
coding, the roles are strictly divided into driver and navigator like
in live pair programming, with the addition of a second navigator
like in multiple live coding. This study is framed in a performance
setting, however it still looks into the live coding synergies between
performance and education.

2 RELATEDWORK
2.1 Turn-Taking and Pair Programming in

CSCW
The organization of turn-taking has been studied in conversation
analysis since late 1960s and early 1970s [22]. Supporting turn-
taking has been a topic of research of CSCW and groupware tech-
nology since early 1990s [18]. Interaction analysis has included both
verbal and non-verbal communication when analyzing technology-
enhanced collaborative settings [14], where both talk-driven inter-
action (e.g., ‘turns at talk’) and instrumental interaction (e.g., ‘turns
with bodies’ and ‘turns with artifacts’, such as two kids taking turns
with a mouse when playing a game) are examined.

Pair programming is an established practice in programming
where two programmers, a driver and a navigator, collaborate on
the same computational problem (e.g., designing, coding or testing)
and after a certain amount of time (e.g., 10 minutes) they switch
roles [25]. While the driver is in charge of writing the code, the
navigator is responsible of both the long-run thinking, in particular
the nitty-gritty details and potential errors, such as syntax errors
[25]. Turn-taking between a small number of users is described
in a seminal study on designing systems for collaborative musical
experiences [4] as a useful protocol for assessing new musical
instruments, notably in [2, 7]. This research is influenced by pair
programming practices but supporting larger groups than pairs in
a turn-taking fashion of a driver and a few navigators and applied
to the domain of music computing, which is novel in the literature.

2.2 Communication Tools in CSCW
There exist a number of environments that support real-time collab-
oration for text editing (e.g., SubEthaEdit,1 ShareLatex,2 Overleaf)3;
learning (e.g., Virtual Math [16]); and coding (e.g., CodeCircle [9]).
The most common characteristics for supporting real-time collab-
oration, in alignment with CSCW techniques, include supporting
sharing links, users’ online presence, color-coding users, levels of
access permissions, communication tools (e.g., chat, commenting),
visual feedback of real-time multiple-interaction, version history,
and error handling as a shared experience.

Facilitating networked collaboration and communication is re-
ported as essential for CMLC [15]. Music live coding environ-
ments that support collaboration include Overtone [1], Gibber
1https://codingmonkeys.de/subethaedit (accessed March 27, 2017).
2http://sharelatex.com (accessed March 27, 2017).
3https://overleaf.com (accessed March 27, 2017).

[21], Betablocker [20], the Republic quark [5] in SuperCollider,
and Fluxus [20]. In Overtone, there is a text chat panel that lets the
members of a session send messages separated from the code. In
Gibber, users can meet in a chat room where real-time collabora-
tive code editing is possible (like GoogleDocs yet with no colored
users). Editing is in sync, but execution is independent for each user.
Other environments that support co-located and remote text-based
collaborative music improvisation and include a chat window are
LOLC [11], urMus [15], and Lich.js [19]. A study on a CSCW music
system reported that the chat was used for exchanging descriptions
of the users’ activities [8].

Our paper is based on the use of the communication tools tradi-
tionally used in CSCW for supporting awareness and communica-
tion among a team, such as a chat, a buddy list, and the code editor
as a shared space. Turn-taking in EarSketch is a a first step towards
supporting real-time collaboration using these tools. It is an open
question how to use these tools effectively during a CMLC session,
which is tackled next.

2.3 Language in SMS and Social Media
In the literature, we find that using short messaging system (SMS)
texting and social media hashtags do not affect negatively formal
writing [3, 23]. Features of SMS messaging include the use of short
utterances, abbreviations, emoticons, and other symbols [12]. Syn-
tactical and lexical reductions are applied in SMS texting to reduce
effort, time and space [13].

Our approach to SMS and social media hashtags is to take advan-
tage of their established use among students but applied to facilitate
the communication between live coders during a CMLC session.
Here the use of the SMS texts and social media hashtags benefits
an informal learning environment where efficient communication
is in the fore. Supporting an informal language style, commonly
used between students, can raise interest in programming, which
is a well-known challenge in CS education [10].

3 THE STUDY
EarSketch [10] is a free online tool and curriculum designed for
learning to code by making music using audio samples, beats, and
effects. It is inspired by a digital audio workstation (DAW) interface
and supports both composition features and live coding features
[26]. Next, we detail how EarSketch is also incorporating collabo-
rative features.

3.1 EarSketch and Collaboration
Collaboration in EarSketch has been divided into three phases.
Each phase introduces new features to support richer collaboration
between users. Phase 1 has been implemented, while phase 2 is
under development, and phase 3 is future work.

3.1.1 Phase 1. The first phase of collaboration in EarSketch
introduced the capability of sharing scripts through links or users
and to share the audio on SoundCloud. Another feature added was
to automatically retain the metadata of the original script, such as
the title and author name. Using the workflow of importing the
code before allowing users to edit ensures that the authorship is
attributed when the users share or publish the script.

https://codingmonkeys.de/subethaedit
http://sharelatex.com
https://overleaf.com

Turn-Taking and Chatting in Collaborative Music Live Coding AM ’17, August 23–26, 2017, London, United Kingdom

Figure 2: Turn-taking collaborative editing -NavigatorView.

3.1.2 Phase 2. The second phase of collaboration in EarSketch
will allow multiple users to work on the same script, allowing for
the possibility of real-time collaborative script editing. This type
of collaboration follows the model of turn-taking where only one
of the users is the driver and all other users are navigators. The
navigators can monitor the changes as they are able to see the edits
in real-time along with the cursor of the driver. There will be visual
feedback to enforce the differences between driver and navigators.
Editing control can be requested from the driver or the original
author/owner of the script, at any time, by any navigator (see Fig.
2). The second phase will also introduce comprehensive support
for notifications throughout the system. These notifications can be
related to newly shared scripts, EarSketch announcements or any
other aspect which the user needs to be notified of.

3.1.3 Phase 3. The final phase of collaboration in EarSketch will
introduce features that support peer-to-peer communication. We
identify two kinds of peer-to-peer communications in EarSketch.
The first type is used to convey information about planning and
other subjective aspects of the script creation and editing. The
second type is used to notify users about potential errors, which
serves as a debugging tool that also has pedagogical value. We
envision that the first type of communication will be supported via
Instant Messaging between the collaborators using a shared chat
window (see Fig. 3).

3.2 Proof of Concept and Study Procedure
We tweaked a version of EarSketch to add collaborative editing and
a chat window for the proof of concept discussed in this paper. As
explained above, the aim was at testing some of the future features
to be included in phases 2 and 3 of collaboration in EarSketch. We
used Firepad4 and Firechat,5 which are both based on Firebase.6

The study procedure consisted of asking the group to create
a live coding session. The group was asked to work on a shared
Python script of EarSketch using their own individual laptops. The
group was expected to write code by turn-taking and to communi-
cate between the team members (e.g., taking decisions) via a chat

4https://firepad.io (accessed April 10, 2016).
5https://firechat.firebaseapp.com (accessed April 10, 2016).
6https://firebase.google.com (accessed April 10, 2016).

Figure 3: Instant messages between collaborators through
the chat window.

window included in EarSketch. Each of the participants was sug-
gested to be at least once in the role of writing code. The group
was encouraged to communicate only using the chat window, as
if it was a performance setting. One laptop was connected to two
loudspeakers and the respective live coder was responsible to run
the script when one of the live coders asked for it. The other live
coders were wearing headphones that allowed them to preview
sounds or scripts independently, if necessary.

The use of the following hashtags was suggested to the group
for the communication in the chat window: #req for requesting
a turn, #go for giving the turn, and #run for running the code in
case the laptop’s person was not connected to the loudspeakers.
Direct messages were encouraged using the username preceded
with an ampersand symbol (e.g., @username). Both scripts and
comments in the chat window were stored for data analysis. The
session was video recorded using the screencast software SnagIt.7
The screencast software captured the screen from the computer that
was connected to the loudspeakers while the group was working
with EarSketch.

4 EXPERIENCE AND DISCUSSION
We informally tried two sessions of CMLC with a trio and a duo.
The three are expert musicians, and one (who performed in the
trio) is an expert in EarSketch.8 Each session lasted around 20
minutes. In this section, we report and compare each of the two
experiences from an autoethnographic perspective. We discuss the
two approaches within the broader picture of live coding in CSCW
and highlight next steps.

4.1 Trio Live Coding
Two navigators and one driver allowed us to have more specialist
roles. One task of the navigator was to preview sounds with their
headphones and suggest audio samples’ names that could suit well.
This task was done autonomously or requested by another live
coder. If there was an error when executing the code from the main
terminal, previewing the error from another terminal was also used
to solve the problem. As the piece was using algorithmic elements,
7https://techsmith.com/screen-capture.html (accessed April 10, 2016).
8A video sample of both sessions can be found here: https://vimeo.com/212639022.

https://firepad.io
https://firechat.firebaseapp.com
https://firebase.google.com
https://techsmith.com/screen-capture.html
https://vimeo.com/212639022

AM ’17, August 23–26, 2017, London, United Kingdom A. Xambó et al.

every time that we pressed the “run” button there was a change and
thus executing the code was found aesthetically interesting. We
ended the piece with a combination of quick changes and executions
of the code that resulted in a compelling glitch style.

We as a group constantly used the chat window to explain un-
clear code snippets (e.g., “master track would be MASTER_TRACK
instead of track number”), share plans of individual actions (e.g.,
“I want to make a longer beat string algorithmically”), or suggest
actions that others could do (e.g., “maybe mute the tracks one by
one?”). Having three on board, allowed us to tell others when we
were done or tired of driving the session (e.g., “and now ready for
someone else with fresh ideas...”). The three suggested tags were
used for requesting, granting and asking the live coder of the mas-
ter terminal to execute code. However, direct or group messages
were assumed without making them explicit. For example,@user-
name was not used. The chat window was also used to plan parts
of the piece (e.g., “btw we can start doing an ending?”), ask for
opinion or help (e.g., “are any of the groove sounds good here? e.g.
HOP_DUSTYGROOVEPART_001”), or comment about the musical
results (e.g., “this is nice”). We requested an equal frequency of
turns during the session. One of the live coders is an expert of
EarSketch, so he helped the team when using other functions than
the common fitMedia() or makeBeat(). For example, the expert
live coder explained the makeBeatSlice() function via the chat
window (e.g., “each successive number is an index to a different
timestamp in the sound”). This saved us time of looking at the
EarSketch curriculum and was an instance of situated peer learning
[6].

4.2 Duo Live Coding
If compared to the trio live coding, we also equally requested turns
during the session, but the pace was faster. From a driver perspec-
tive, it was more participative, but it also felt more linear, like in a
Ping Pong game of back and forth with the ball. The session felt
more predictable. In particular, the roles were less specialized, fo-
cusing on alternating between driving and navigating. Often times,
as a navigator we were planning our next move as drivers and
paying less attention to the other’s actions. The chat window was
used similar to how we used it in the trio live coding session: as a
tool for communication to discuss about the code and the musical
output.

4.3 Lessons Learned
As live coders, we found the model of turn-taking a little bit slow
for a performance setting. It would be interesting to combine it with
Google Docs-like collaborative editing, discussed as the multiple
live coding approach in [26]. It is still an open question how to
combine the structure provided by turn-takingwith amore freestyle
format provided by simultaneous multiple editors so that both
performers and audience understand what is going on.

We found the preview feature was useful to the group, which
allowed us to preview sounds before adding them to the shared
script or solve an error in the code while others where working
with other tasks in parallel. Providing personal spaces as essential
for collaboration aligns with previous research on CSCW applied
to music [8].

The two members who experienced both duo and trio live cod-
ing found it more interesting to work as a trio live coding than
as a duo. Partly the fact that one of the live coders is an expert of
EarSketch helped. In addition, the combination of multiple special-
ized tasks made the improvisation more varied and serendipitous.
We discussed that the live coder needs to be skillful with the pro-
gramming language, as the musician needs to master the musical
instrument, evenmore if it is only a group of two live coders.Within
larger groups, an expert in the team can help to make worthwhile
the turn-taking approach, as someone who has the broader picture.
In an educational context, combining expert students with novice
students seems sensible.

Turn-taking in live coding reminded us of the cadavre exquis
collaborative game, where the more the merrier for creative dis-
covery, or hip hop concerts with several MCs. The experience of
turn-taking recalls what Wessel and Wright [24] describe as the
catch and throw metaphor in musical control, where there is a dia-
logue between a group of musicians, in which the musical material
is received, modified and sent in real time. In this case there is a
shared space where the musical material is changed under request.

Using a chat window and hashtags was an effective tool of com-
munication. Connecting hashtags to visible notifications that go
to either a user or the group seems like the next step for improv-
ing the communication in EarSketch. This aligns with the planned
implementation of adding the turn-taking feature, a chat window,
and roles associated to a script (e.g., owner and collaborators).

5 CONCLUSION AND FUTUREWORK
This paper looked into turn-taking and chatting in CMLC using the
CS educational online platform EarSketch. We compared duo and
trio live coding from an autoethnographic stance. We discovered
that a trio live coding can be more interesting in performance be-
cause the roles of a driver and two navigators, borrowed from pair
programming, can specialize and adapt easily during the musical
improvisation act. We found that the role of a chat window is an
important tool for supporting communication in CMLC, and that
using hashtags was promising. However, we also foresee that an
hybrid form of turn-taking combined with multi-editing a shared
script can be the most interesting result in performance. We spec-
ulate that turn-taking and chatting in collaborative live coding
between groups of two, three, or larger groups, can be useful in
the classroom for pedagogical purposes. We plan to continue this
research towards improving collaboration in EarSketch, supporting
both performance and education settings. Future work also includes
gathering audience response and exploring group dynamics.

ACKNOWLEDGMENTS
The EarSketch project receives funding from the National Science
Foundation (CNS #1138469, DRL #1417835, DUE #1504293, and
DRL #1612644), the Scott Hudgens Family Foundation, the Arthur
M. Blank Family Foundation, and the Google Inc. Fund of Tides
Foundation.

REFERENCES
[1] Samuel Aaron and Alan F. Blackwell. 2013. From Sonic Pi to Overtone: Creative

Musical Experiences with Domain-Specific and Functional Languages. In Pro-
ceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling

Turn-Taking and Chatting in Collaborative Music Live Coding AM ’17, August 23–26, 2017, London, United Kingdom

& Design (FARM ’13). 35–46.
[2] Hansen Anne-Marie, Jørgen Andersen Hans, and Raudaskoski Pirkko. 2012. Two

Shared Rapid Turn Taking Sound Interfaces for Novices. In Proceedings of the
12th International Conference on New Interfaces for Musical Expression (NIME ’12).
470–473.

[3] Shazia Aziz, Maria Shamim, Muhammad Faisal Aziz, and Priya Avais. 2013. The
Impact of Texting/SMS Language on Academic Writing of Students: What Do We
Need to Panic About? Elixir Linguistics and Translation 55 (2013), 12884–12890.

[4] Tina Blaine and Sidney Fels. 2003. Contexts of Collaborative Musical Experiences.
In Proceedings of the 3rd International Conference on New Interfaces for Musical
Expression (NIME ’03). 129–134.

[5] Alberto de Campo. 2014. Republic: Collaborative Live Coding 2003-2013.
Dagstuhl, 152–153.

[6] Pierre Dillenbourg. 1999. What Do You Mean by ’Collaborative Learning’? In
Collaborative Learning: Cognitive and Computational Approaches, P. Dillenbourg
(Ed.). Vol. 1. Elsevier, Oxford, UK, 1–19.

[7] Sidney Fels and Florian Vogt. 2002. Tooka: Explorations of Two Person In-
struments. In Proceedings of the 2002 Conference on New Interfaces for Musical
Expression. 1–6.

[8] Robin Fencott and Nick Bryan-Kinns. 2010. Hey Man, You’re Invading my
Personal Space! Privacy and Awareness in Collaborative Music. In Proceedings of
the 10th International Conference on New Interfaces for Musical Expression (NIME
’10). 198–203.

[9] Jakub Fiala, Matthew Yee-King, and Mick Grierson. 2016. Collaborative Coding
Interfaces on the Web. In International Conference of Live Interfaces (ICLI 2016).
49–58.

[10] Jason Freeman, Brian Magerko, TomMcKlin, Mike Reilly, Justin Permar, Cameron
Summers, and Eric Fruchter. 2014. Engaging Underrepresented Groups in High
School Introductory Computing through Computational Remixing with EarS-
ketch. In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education (SIGCSE ’14). 85–90.

[11] Jason Freeman and Akito Van Troyer. 2011. Collaborative Textual Improvisation
in a Laptop Ensemble. Computer Music Journal 35, 2 (2011), 8–21.

[12] Robert Godwin-Jones. 2005. Emerging Technologies: Messaging, Gaming, Peer-to-
Peer Sharing: Language Learning Strategies & Tools for theMillennial Generation.
Language Learning & Technology 9, 1 (2005), 17–22.

[13] Mohd. Sahandri Gani B. Hamzah, Mohd. Reza Ghorbani, and Saifuddin Kumar B.
Abdullah. 2009. The Impact of Electronic Communication Technology onWritten
Language. Online Submission 6, 11 (2009), 75–79.

[14] Brigitte Jordan and Austin Henderson. 1995. Interaction Analysis: Foundations
and Practice. The Journal of the Learning Sciences 4, 1 (1995), 39–103.

[15] Sang Won Lee and Georg Essl. 2014. Communication, Control, and State Sharing
in Collaborative Live Coding. In Proceedings of the 14th International Conference
on New Interfaces for Musical Expression (NIME ’14). 263–268.

[16] Rachel M Magee, Christopher M Mascaro, and Gerry Stahl. 2013. Designing for
Group Math Discourse. In 2013 Conference on Computer Supported Collaborative
Learning (CSCL 2013). 312–319.

[17] Thor Magnusson. 2011. Confessions of a Live Coder. In Proceedings of the Inter-
national Computer Music Conference 2011 (ICMC ’11). 609–616.

[18] Andy McKinlay, Rob Procter, Oliver Masting, Robin Woodburn, and John Arnott.
1994. Studies of Turn-Taking in Computermediated Communications. Interacting
with Computers 6, 2 (1994), 151–171.

[19] Chad Mckinney. 2014. Quick Live Coding Collaboration in the Web Browser.
In Proceedings of the 14th International Conference on New Interfaces for Musical
Expression (NIME ’14). 379–382.

[20] Alex McLean, Dave Griffiths, Nick Collins, and G. A. Wiggins. 2010. Visualisation
of Live Code. In Visualisation and the Arts. 1–5.

[21] Charles Roberts and JoAnn Kuchera-Morin. 2012. Gibber: Live Coding Audio in
the Browser. In Proceedings of the International Computer Music Conference 2012
(ICMC ’12). 64–69.

[22] Harvey Sacks, Emanuel A. Schegloff, and Gail Jefferson. 1974. A Simplest Sys-
tematics for the Organization of Turn-Taking for Conversation. Language 50, 4
(1974), 696–735.

[23] Latisha Asmaak Shafie, Norizul Azida, and Nazira Osman. 2010. SMS Language
and College Writing: The Languages of the College Texters. International Journal
of Emerging Technologies in Learning 5, 1 (2010), 26–31.

[24] David Wessel and Matthew Wright. 2002. Problems and Prospects for Intimate
Musical Control of Computers. Computer Music Journal 26, 3 (2002), 11–14.

[25] LaurieWilliams and Robert Kessler. 2002. Pair Programming Illuminated. Addison-
Wesley Longman Publishing Co., Inc.

[26] Anna Xambó, Jason Freeman, Brian Magerko, and Pratik Shah. 2016. Chal-
lenges and New Directions for Collaborative Live Coding in the Classroom. In
International Conference of Live Interfaces (ICLI 2016). Brighton, UK.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Turn-Taking and Pair Programming in CSCW
	2.2 Communication Tools in CSCW
	2.3 Language in SMS and Social Media

	3 The Study
	3.1 EarSketch and Collaboration
	3.2 Proof of Concept and Study Procedure

	4 Experience and Discussion
	4.1 Trio Live Coding
	4.2 Duo Live Coding
	4.3 Lessons Learned

	5 Conclusion and Future Work
	Acknowledgments
	References

