
 
 

 
 

Abstract 
This paper reports on the progress of a co-creative pretend 
play agent designed to interact with users by recognizing and 
responding to playful actions in a 2D virtual environment. In 
particular, we describe the design and evaluation of a classi-
fier that recognizes 2D motion trajectories from the user’s ac-
tions. The performance of the classifier is evaluated using a 
publicly available dataset of labeled actions highly relevant 
to the domain of pretend play. We show that deep convolu-
tional neural networks perform significantly better in recog-
nizing these actions than previously employed methods. We 
also describe the plan for implementing a virtual play envi-
ronment using the classifier in which the users and agent can 
collaboratively construct narratives during improvisational 
pretend play. 

 Introduction   
Pretend play is a universal and foundational aspect of human 
existence. It serves to strengthen social ties within groups, 
increase affect between individuals, and allow meaningful 
learning and practice at creative problem solving (Caillois, 
2001; Huizinga, 1950; Power, 1999). Pretend play is there-
fore a critical part of the human condition within familial 
and social groups. Understanding play and designing inter-
ventions to help facilitate it could have significant impacts 
on childhood education, therapy, and entertainment. One ap-
proach to exploring this problem is developing creative 
agents designed to engage in pretend play with users. This 
paper describes our technical progress in developing a co-
creative agent that can engage in pretend play with human 
users. 
 Pretend play is an improvisational and open-ended crea-
tive process, meaning new ideas and activities are dynami-
cally introduced and explored through interaction. Previous 
work empirically investigating pretend play between dyads 
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(Davis, et al. 2015) found that players gradually co-con-
struct meaning through interaction, involving a tight feed-
back loop between perception and action in a process the 
cognitive science literature describes as ‘participatory 
sense-making’ (De Jaegher & Di Paolo 2007; Fuchs & De 
Jaegher 2009). Players recognize stable relationships be-
tween their actions and effects in the environment, such as 
how the other player responds. Through these stable rela-
tionships, basic meaning structures emerge referred to as 
‘nucleus activities’ that afford certain types of activities that 
serve to guide the play interaction moving forward (Davis et 
al. 2015). As these nucleus activities expand and layers of 
meaning begin to grow and weave together, a narrative 
emerges to connect these nucleus activities together. 
 As a result of the open-ended nature of creative pretend 
play, there are numerous (potentially infinite) actions and 
intentions players may utilize during a play session. The 
huge variety of actions and their associated knowledge re-
quirements make designing an agent for this type of open-

 

 
Figure 1: The computational pretend play environment. 
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ended creative context a significant challenge. Instead of at-
tempting to encode this type of knowledge into an agent 
(e.g. using scripts or case-based reasoning), we explore an 
interactive machine learning solution where users can 
demonstrate new actions to the system during play. Our ap-
proach utilizes data augmentation and deep learning to ena-
ble the system to learn how to classify new actions based on 
a few demonstrations along with user feedback. Utilizing 
this approach enables a form of crowdsourced knowledge 
generation where multiple players could add new actions as 
they become relevant during play sessions, gradually accu-
mulating the knowledge of the creative play agent through 
its own experience.  
 Action classification itself is a significant technological 
challenge, especially when actions need to be understood 
through direct observation in real-time environments. To 
narrow the scope of this action classification problem, we 
implemented the play environment in a simple 2D virtual 
world, shown in Figure 1, where actions are defined as the 
movement trajectories of characters within that environ-
ment. To test the efficacy of our learning approach, we em-
ploy a crowdsourced dataset of 2D actions recently collected 
by Roemmele et al. that is highly relevant to the domain of 
play (Roemmele et al. 2016). Our experimental findings 
suggest that our proposed approach using a deep convolu-
tional neural network is more efficient and accurate for clas-
sifying play actions in a 2D environment than the current 
state of the art.  

Background 
Pretend play between two or more individuals often in-
volves moving around objects within an environment as 
well as personifying and attributing intentions to those ob-
jects and movements. While narrative is important for play 
during improvisational play activities, empirical work indi-
cates that the narrative component often emerges through 
making sense of actions that each player chose to employ at 
a given time (Davis et al. 2015). That is, narrative serves as 
a cognitive tool to rationalize and make sense of action se-
quences coming from multiple parties that are not entirely 
predictable. Thus, action classification is a critical skill for 
a co-creative play agent. 
 The problem of action classification in pretend play is 
closely related to the decades of work on human activity, 
action, and gesture recognition from wearable sensors (c.f. 
Lara & Labrador 2013), mobile phones (c.f. Shoaib et al. 
2015), and video footage (c.f. Ziaeefard & Bergevin 2015). 
Our work embraces the recent trend of applying deep neural 
networks towards solving this problem (c.f. Cheng et al., 
2015). Broadly, deep neural networks have been used in ac-
tivity recognition with sequential data in recurrent neural 
networks (RNNs) (Donahue et al. 2015; Venugopalan et al. 

2015), and with spatio-temporal volumetric data in convo-
lutional neural networks (CNNs) (Ma et al., 2016; Liu et al. 
2016; Wu et al. 2016; Deng et al. 2015). Our approach sim-
ilarly used spatial data to classify actions from the Charades 
dataset achieving a higher accuracy than the recurrent neural 
network approach. 

Roemmele et al. (2016) describe early work by Heider & 
Simmel (1944) that demonstrate how humans attribute in-
tentionality to inanimate objects moving in a simple 2D en-
vironment. Heider & Simmel developed a short film that de-
picted different geometric shapes moving in 2D around a 
rectangle with a door-like extension. They asked partici-
pants in the study, to view the film and describe what they 
thought was happening. The results overwhelmingly indi-
cated that individuals tended to personify the actions of in-
animate objects and weave them into a rich narrative with 
emotion and social relationships. The interpretation of these 
movements was shown to be dependent on characteristics of 
the motion and the current narrative context (eg. distinguish-
ing between fly, attack, turn, etc. based on the specific mo-
tion trajectory and narrative context). 

Roemmele et al. (2016) developed an updated version of 
the experiment to collect two crowd-sourced datasets: the 
Charades dataset, which consisted of animations of triangles 
performing a single action (defined by a verb either affect-
ing one or two actor triangles), and the Theatrical dataset, 
which consisted of triangles performing recognizable ac-
tions. In their analysis, Roemmele et al. compared two dis-
tinct machine learning approaches, a spatiotemporal bag of 
words model and a recurrent neural network, to classify 
which action or set of actions corresponded to the trajecto-
ries of the actors in both of their datasets. Their models 
achieved 12.5% using bag-of-words and 25% using recur-
rent neural networks respectively. In this paper, we compare 
our approach, convolutional neural networks, to the meth-
ods proposed by Roemmele et al. on the Charades dataset to 
evaluate its effectiveness and utility for action classification 
in a pretend play environment. 

System Design 
Figure 1 shows the online pretend play environment in 
which the creative play agent can interact with users in real-
time. This online environment contains a 2D virtual play-
ground with characters that the user can move around. The 
characters that can be manipulated and moved by users are 
cartoon animal images inspired by the set of toys used dur-
ing our empirical investigation of play (Davis et al. 2015). 
These animal characters were found to encourage a playful 
mindset and allow for more explicit and intentional attribu-
tion to the movements during play.  

Creating new actions is critical for improvisational play 
since there is a wide variety of actions users may want to 
employ during a play session. Users can add a new action to 
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the agent’s knowledge base by selecting the appropriate but-
ton, labeling their desired action, and proceeding to demon-
strate its performance. The system was designed to learn the 
target action with a high degree of accuracy in a minimal 
amount of demonstrations to reduce the training burden on 
the user.  

Once an action has been demonstrated, the agent can 
showcase its learned capabilities in the virtual playground 
with the player. For instance, when a player selects an action 
for the system to perform, the agent selects a character on 
the screen and moves it in the path specified by the policy 
learned for that action. After the agent performs an action to 
demonstrate its understanding, the user can then confirm or 
deny whether the demonstration accurately portrayed the in-
tended action by voting up or down with feedback buttons 
to provide supervision to the learning process. 

The online environments’ full integration with the deep 
learning modules described below allows for our deep learn-
ing-based model to learn and classify actions beyond those 
in the Charades dataset used in the evaluations described 
here. Once the user defines and performs an action, the tra-
jectory of the actor in the playground is sent to the neural 
network for training. The backend of the pretend play envi-
ronment consists of three core components related to the 
neural network architecture: Data Congealing, Motion Tra-
jectory Classification, and Motion Trajectory Generation. 
An additional input module takes in a bitmap image that 
contains the motion shape and resizes it to be sent to the 
Data Congealing module.  

The data congealing module we employ takes in the input 
image and generates similar images to increase the amount 
of training data for the system. This is particularly useful in 
the domain of pretend play since it reduces the amount of 
demonstrations required for teaching the system a new ac-
tion. The data congealing modules uses two techniques: 1) 
applying random rotations, translations, and left to right re-
flections onto the user input; and 2) using reinforcement 
learning algorithms to generate trajectories which are simi-
lar to the actual input but deviate slightly in shape. For ex-
ample, if a circular shape is fed into the congealing module, 
it would output circles of different sizes and oval shapes that 
are similar to the circle but not the same. Jittering the input 
data in this manner ensures that the system does not over-fit 
to the sample data received from the user and offers a greater 
degree of generalization (Yu et al. 2015). 
 Once the appropriate training data has been generated, it 
is sent to the classification and generation modules respec-
tively. The classification module uses a deep convolutional 
neural network to classify the motion trajectory and help es-
tablish a shared context with the user. The generation mod-
ule uses a Deep Convolutional Generative Adversarial Net-
work (Goodfellow et al. 2014) to generate motion trajecto-
ries from the previously learned inputs to be outputted onto 
the playground as the co-creative agent’s action. These 
modules work together to understand the meaning behind 
the motion trajectories of the user’s actions and enable the 

agent to generate its actions during pretend play. To learn 
new actions, transfer learning is utilized in the above mod-
ules where the trained network weights are reused to retrain 
on the new action-label pair (Azizpour et al. 2015). This al-
lows for incremental learning while still retaining the previ-
ously learned knowledge. 
 The reason behind having a classifier in a co-creative pre-
tend play system is that the system must be able to recognize 
the user’s current action accurately in order to understand 
their intention and construct a meaningful narrative. In order 
to engage the user effectively, the system must be able to 
recognize these trajectories with a high accuracy so that both 
the parties can move forward after they have successfully 
established a shared context. Once high accuracy in action 
recognition has been achieved for individual actions, the 
next step is to focus machine learning on understanding how 
actions are performed together and sequenced according to 
the narrative that is dynamically emerging during pretend 
play. If the system is unable to understand how these indi-
vidual actions are performed together, it may lead to an in-
effective play partner where the agent would be unable to 
collaboratively grow the nucleus activity (Davis et al. 2015). 

Neural Network Architecture 
We sought to apply a deep learning approach to the Cha-
rades dataset in order to evaluate its effectiveness and com-
pare its utility to methods proposed by Roemmele et al. for 
action classification in a pretend play environment. To that 
end, we changed the framing of the problem from sequence 
classification to image recognition. We predicted that a deep 
learning approach with convolutional neural networks 
would yield better classification accuracies because of these 
networks’ recent successes with images and sketches (Yu, 
et al. 2015; Simonyan K. & Zisserman A 2014; Szegedy et 
al., 2015).  
 The structure and functional organization of convolu-
tional neural networks are inspired from the biology of the 
human eye (LeCun, Y. & Bengio, Y. 1995). They consist of 
multiple learnable filters arranged in layers, which each ex-
tract relevant features from input images, just as the visual 
cortex has different layers that each have unique specializa-
tions in processing visual information. The cognitive argu-
ment for using convolutional neural networks in a co-crea-
tive play agent is that using such networks would resemble 
how classification and recognition would occur in the hu-
man vision system. Furthermore, an extensive amount of 
previous research has addressed action and gesture recogni-
tion from camera video data using convolutional neural net-
works (Tran et al. 2014). However, our work emphasizes the 
application of deep learning methods for recognizing mo-
tion trajectories as opposed to the recent emphasis on image 
caption generation. 
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For the purpose of classifying motion trajectories, we bor-
rowed from various other convolutional neural network ar-
chitectures to assemble a classifier that can work with 2D 
images without texture information. As shown in Figure 2, 
we ended up modifying the VGG CNN-S model by remov-
ing Local Response Normalization as they perform well 
with images that have textural information but not well with 
edges or sketches (Yu et al. 2015; Krizhevsky et al. 2012). 
We refer to this model as Deep-Play and this model works 
best with 2D motion trajectories rather than 2D images with 
texture information. The input is a 224 by 224 image and it 
outputs the scores for 32 categories of actions. The overall 
architecture is specified below: 
 

Lay-
ers 

 

 Input (3 x 224 x 224) image 
1 Conv (Filters: 96, Filter Size = 7 x 7, stride: 2) 
 Max Pool (Pool Size: 3, Stride: 3) 
2 Conv (Filters: 256, Filter Size = 5 x 5) 
 Max Pool (Pool Size: 2, Stride: 2) 
3 Conv (Filters: 512, Filter Size = 3 x 3, Pad: 1) 
4 Conv (Filters: 512, Filter Size = 3 x 3, Pad: 1) 
5 Conv (Filters: 512, Filter Size = 3 x 3, Pad: 1) 
 Max Pool (Pool Size: 3, Stride: 3) 
6 FC (neurons: 4096, dropout = 0.5) 
7 FC (neurons: 4096, dropout = 0.5) 
 Softmax (classes = 32) 

Table 2: The convolutional neural network architecture. 

 

 
Figure 2: The convolutional neural network after modifying VGG 

CNN-S  

In the following sections we describe the results of our 
experiments evaluating our proposed approach. Based on 
our results, we argue that convolutional neural networks are 
a better candidate for classifying the underlying action from 
motion trajectories as compared to recurrent neural net-
works used in the past experiments. 

Experiments 
The dataset we used to evaluate the accuracy of action clas-
sification in our system was a publicly available dataset of 
labeled actions called the Charades dataset. Roemmele et al. 

collected this data in a crowd-sourced manner, using a game 
where users perform actions in a 2D virtual environment us-
ing simple shapes as characters (such as a triangle, square, 
circle, etc.). Other players then viewed these recorded ac-
tions and guessed the high-level label for the action (similar 
to the popular game called Charades). Those actions with a 
high level of agreement among players were added to the 
database of labeled actions. Example actions include dance, 
jump, run, accelerate, spin, fly, roll, and roam. This dataset 
was particularly informative for our target domain of pre-
tend play as the actions covered a wide variety of verbs that 
could be used when expressing ideas and playing out scenes 
during pretend play.   
 There are both one-character and two-character datasets. 
The one-character data contains the motion trajectories of 
actions that were created using only one character in the 
Charades game, whereas the two-characters data contains a 
consolidated set of the motion trajectories of actions con-
structed using two characters in the game. There are 2060 
one-character animations and 1158 two character anima-
tions in the dataset. The animations are represented as a set 
of (X, Y) coordinates that describe these motion trajectories.  
 Roemmele, et al. were able to achieve 12.6% accuracy on 
the one-character data and 25% on the two-character data 
set. This dataset is an ideal candidate for exploring the 
power of convolutional neural networks since they mimic 
human vision and can recognize visual patterns better than 
other types of neural network. For a successful game of Cha-
rades to happen, the actions must be classified accurately so 
that the system can progress after establishing a shared 
meaning and continue with the narrative. This process di-
rectly transfers to the pretend play domain since the agent 
needs to understand the current action and build on the ac-
tion in order to continue the story in a successful play ses-
sion. This motivated our focus on action classification accu-
racy in our experiments. 

The convolutional neural networks were run individually 
on each of the sets (i.e. one-character and two-character 
data). Since each dataset came with a set of testing data, it 
helped in defining the baseline to compare our classifier 
with the other classifiers used in the previous work. In addi-
tion to the previous results obtained by Roemmele et al. us-
ing a spatio-temporal bag-of-words and recurrent neural net-
work approach, we explored other convolutional neural net-
work architectures to offer a comparison with the Deep-Play 
classifier used in our system. For example, we also tested 
Google’s Inception network with batch normalization, 
which won the ImageNet 2014 challenge on classifying im-
ages.  

The training pipeline to the deep convolutional neural net-
work involves preprocessing images to encode spatial infor-
mation before sending it to the network. This was done by 
plotting the motion trajectory and creating an image out of 
it with different colors assigned to each character’s motion 
trajectory so that the neural network learned to differentiate 
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between motions of different characters. One key difference 
between our approach and the previous approaches was that 
we removed the time dimension from the input sequence and 
only worked with the spatial data. Some example images 
along with the actions they represent are shown in Table 3 
below. 
 

   
Turn Accelerate Spin 

   
Accompany Argue with Mimic 

Table 3: The images representing temporal information that is 
sent to the neural network. Top row shows one-character exam-

ples and bottom row shows two-character examples. 

 During the training phase, we made use of simple data 
augmentation techniques such as horizontal flipping and 
random rotating to counter overfitting similar to the working 
of the congealing module mentioned in the system architec-
ture section. The point to note here is that the previous state-
of-the art results obtained on this data set used handcrafted 
features for constructing the spatio-temporal bag-of-words 
vocabulary. The features of the spatio-temporal bag-of-
words model are described in Table 4.  
 
1-character Distance, Rotation, Angle, Angle Offset, Ve-

locity, Rotational Velocity, Acceleration, 
Rotational Acceleration, Jerk, Curvature, 
Angle Change 

2-character Relative Distance, Relative Angle, Relative 
Velocity, Relative Acceleration, Relative 
Jerk, Relative Angle Change 

Table 4: The features used to the construct the Bag-of-Words 
model (Roemmele et al. 2016). 

 The previous research also made use of recurrent neural 
networks. These networks can use their internal memory to 
learn and classify sequences. For this neural network, the 
input was distance, rotation, and velocity used to represent 
the input as a sequence (Roemmele et al. 2016). The two 
methods attempted in the previous work required some de-
gree of feature engineering and recording extra parameters. 

In general, these parameters are selected mostly by intuition 
or through prior research and can restrict the model’s accu-
racy. However, one can bypass recording of these extra pa-
rameters if the actions are represented visually. Therefore, 
our approach using convolutional neural networks aims to 
provide an end-to-end learning solution without hand-engi-
neering any of the features. This allows for automatically 
extracting the relevant features from the 2D lines, as their 
meaning could change over time. 

Results 
The experiments were performed on the Charades dataset 
mentioned above. For the one-character dataset, the neural 
network was run for 100 training iterations with a learning 
rate of 0.001 using stochastic gradient descent with 
Nesterov momentum of 0.9 for each of the model architec-
tures namely, Deep-Play and Google Inception network 
with batch normalization (Szedegy et al. 2015). The results 
below show the classifier’s accuracy on the one-character 
dataset and it includes the results from the previous research 
where words + LR is the bag-of-words with logistic regres-
sion, words + NB is the bag-of-words with Naive Bayes 
classifier. 
 

Deep-Play: 
99.5% 

Google-In-
ception: 
76.8% 

Words + 
LR: 12.6% 

Words + 
NB: 8.5% 

1 Layer -
RNN: 8.0% 

2 Layer -
RNN: 7.3% 

Baseline: 
5.3% 

 

Table 5: Classification accuracies for one-character dataset. 

These results demonstrate that using a convolutional neu-
ral network on the image-based representation of the motion 
trajectories improved the accuracy drastically as compared 
to the state of the art accuracy of 12.6% using the Words + 
LR method. Moreover, we can see that Google’s Inception 
network was only able to achieve an accuracy of 76.8%, de-
spite being the state of the art on the image-net dataset for 
object recognition in images (Szedegy et al., 2015). This 
finding supports our hypothesis that detection of motion tra-
jectories requires a network that can work in the absence of 
texture information. The Deep-Play classifier was able to 
achieve a 100% recognition rate on the test set except for 
certain actions such as limp, stumble, creep and drift. Most 
motion trajectories used to represent these classes where 
hard to differentiate, as they were highly overlapping. The 
accuracies are provided below: 
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Limp: 90% Stumble: 92% Creep: 90% Drift: 85% 

Table 6: Accuracy on classes that were classified incorrectly 

For the two-character dataset, the Deep-Play classifier 
was trained using ADAM optimizer (Kingma, D. & Ba, J. 
2015) and a learning rate of 0.0001. In contrast, stochastic 
gradient descent gave varying accuracies for each iteration. 
However, at very high epochs, this optimizer gave results on 
par with ADAM. The results using the ADAM optimizer are 
described in the table below: 
 

Deep-Play: 
28.70% 

2 Layer -
RNN: 25.0% 

Words + 
NB: 22.0% 

1 Layer -
RNN: 
18.5% 

Words + 
LR: 12.5% 

Baseline: 
5.6% 

  

Table 7: Classification accuracies for the two-character dataset. 

 As noted, our classifier performed slightly better than the 
2-layer RNN from the previous research. When compared 
to the high accuracy on the one-character dataset, we can see 
that Deep-Play and the other classifiers perform poorly on 
this dataset. Even though with only the spatial representa-
tion available, the classifier was still able to improve upon 
the previous state-of-the-art accuracy of 25% to 28.7%. We 
provide a more detailed description about the possible 
causes that lead to a poor performance on this dataset in the 
discussion section below. 

Discussion 
The experiments provided us with several insights on the 
problem of recognizing actions from motion trajectories. 
The primary insight we found was that the issue of recog-
nizing motion trajectories is more of a computer vision prob-
lem than a low-level sequence classification problem as the 
motion sequences can be represented as an image to account 
for the spatial information. We also found that convolutional 
neural networks are a better candidate for classifying such 
trajectories than recurrent neural networks despite that the 
time dimension in images was not present.  
 In the two-character dataset we reported that no classifiers 
we experimented with gave promising results. This was due 
to the fact that the examples in the training and test set were 
highly overlapping as the temporal dimension was not pre-
sent in the image based representation of these trajectories. 

For example, actions such as “accompany” and “follow”, il-
lustrated in Table 3, were represented using similar motion 
trajectories in absence of the temporal dimension. Thus, dur-
ing our experiment the classifier reached varying accuracies 
for each successive epoch. This problem could be addressed 
by examining the data to ensure that they do not overlap. 
The overlap could be due to a bad example or due to the 
absence of temporal dimension. The temporal information 
could be encoded using sequence of images rather than a 
single image used in our experiments. This image sequence 
can then be classified using spatio-temporal convolutional 
network. This approach is left as a future work. 

Conclusions 
This paper described a co-creative pretend play agent de-
signed to interact with users by recognizing and responding 
to playful actions in a 2D virtual environment. We identified 
action classification as a primary challenge for a co-creative 
pretend play agent in order to build shared meaning and co-
construct a narrative through interaction. Through our ex-
periments, we found that the actions can be represented as 
images that capture their spatial relationships and show how 
convolutional neural networks are effective in recognizing 
such motion trajectories as compared to recurrent neural net-
works used in past research. 
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